

Symposium International CITADEL 2023 Centre d'intégration et d'analyse en données médicales Montréal, Québec Canada November 7, 2023

Aligning biomedical terminologies From lexical models to supervised learning

Olivier Bodenreider, MD, PhD

Senior Scientist

Disclaimer

The views and opinions expressed do not necessarily state or reflect those of the U.S. Government, and they may not be used for advertising or product endorsement purposes.

Fundamental theorem of clinical data interoprability

Outline

Introduction to the UMLS Metathesaurus
 Lexical model of synonymy
 Supervised machine learning for synonymy prediction

Introduction to the UMLS Metathesaurus

What does UMLS stand for?

http://www.nlm.nih.gov/research/umls/

Motivation

Started in 1986

National Library of Medicine

«[...] the UMLS project is an effort to overcome two significant barriers to effective retrieval of machine-readable information.

- The first is the variety of ways the same concepts are expressed in different machine-readable sources and by different people.
- The second is the distribution of useful information among many disparate databases and systems.»

UMLS Metathesaurus

(2023AA)

- ◆ 166 families of source vocabularies
 - Not counting translations
- ◆ 27 languages
- Broad coverage of biomedicine
 - 11.8M names (normalized)
 - ~3.3M concepts
 - >10M relations
- Common presentation

UMLS Metathesaurus Example

Synonymous terms clustered into a concept

Preferred term

Unique identifier (CUI)

Addison Disease Primary hypoadrenalism Primary adrenocortical insufficiency Addison's disease (disorder)

C0001403

MeSHD000224MedDRA10036696ICD-10E27.1SNOMED CT363732003

Addison's disease

Integrating subdomains

Trans-namespace integration

Lexical model of synonymy

From lexical features to synonymy

SPECIALIST Lexicon

Content

- English lexicon
- Many words from the biomedical domain
- Over 500,000 lexical items
- Word properties
 - morphology
 - orthography
 - syntax
- ◆ Used by the lexical tools

Morphology

Inflection

- noun nucleus, nuclei
- verb cauterize, cauterizes, cauterized, cauterizing
 - red, redder, reddest

Derivation

• adjective

- verb 🔶 noun
- adjective ⇐ noun

cauterize -- cauterization

red -- redness

Orthography

Spelling variants

- oe/e
- ae/e
- ise/ize
- genitive mark

oesophagus - esophagus anaemia - anemia cauterise - cauterize Addison's disease Addison disease Addisons disease

Lexical tools

- To manage lexical variation in biomedical terminologies
- Major tools
 - Normalization
 - Indexes
 - Lexical Variant Generation program (lvg)
- Based on the SPECIALIST Lexicon
- ◆ Used by noun phrase extractors, search engines

Normalization

Normalization: Example

Hodgkin Disease HODGKINS DISEASE Hodgkin's Disease Disease, Hodgkin's Hodgkin's, disease HODGKIN'S DISEASE Hodgkin's disease Hodgkins Disease Hodgkin's disease NOS Hodgkin's disease, NOS Disease, Hodgkins Diseases, Hodgkins Hodgkins Diseases Hodgkins disease hodgkin's disease Disease, Hodgkin

Normalization Applications

- Model for lexical resemblance
- ◆ Help find lexical variants for a term
 - Terms that normalize the same usually share the same LUI
- Help find candidates to synonymy among terms
 Help map input terms to UMLS concepts

Metathesaurus building process

◆ All terms from source vocabularies are processed

- Terms that have the same normalized for are candidates for synonymy
 - Unless they bear different semantics
- Synonymy indicated by source vocabularies tends to be preserved

 All candidates (from normalization or sources) are reviewed manually

- Labor-intensive and error-prone
- Synonyms are assigned the same CUI

Example

String	Source	SCUI	AUI	LUI
Headache	MSH	M0009824	A0066000	L0018681
Headaches	MSH	M0009824	A0066008	L0018681
Cranial Pains	MSH	M0009824	A1641924	L1406212
Cephalodynia	MSH	M0009824	A26628141	L0380797
Cephalodynia	SNOMEDCT_US	25064002	A2957278	L0380797
Headache (finding)	SNOMEDCT_US	25064002	A3487586	L3063036

Supervised machine learning for synonymy prediction

Intuition

- Large collection of synonymy assertions in Metathesaurus can be used for supervised learning
 - Positive examples: terms from the same concept
 - Negative examples: terms from different concepts
- Possible features
 - Lexical (words in a term)
 - Semantic (semantics of the source)
 - Relations to other terms

Synonymy function

Addison Disease Primary hypoadrenalism Primary adrenocortical insufficiency Addison's disease (disorder) [...]

C0001403

Hodgkin Disease Granuloma, Malignant Hodgkin lymphoma Malignant lymphoma, Hodgkin's […]

C0019829

syn("Addison Disease", "Primary hypoadrenalism") = 1 syn("Addison Disease", "Hodgkin Disease") = 0

Early experiments Pairwise similarity

Types of embeddings

- Word vectors for representing terms using BioWordVec (2021)
- Knowledge Graph Embeddings for representing the context (2022)
- Siamese LSTM network

Results: Best model

- F1=0.765 (baseline: lexical similarity + source synonymy)
- F1=0.906 (words)
- F1=0.935 (context)

Recent experiments Vocabulary insertion

- Initial approach does not translate well to vocabulary insertion (inserting new terms into the Metathesaurus)
- Rethinking the approach as an entity linking problem
 - Given a new term, find the concept with which it should be associated
 - Or indicate if there is no such concept

Recent experiments Vocabulary insertion

	Accuracy	
Rule Based Approximation (RBA)	70.1	Lexical similarity + source synonymy
LexLM PubMedBERT SapBERT	$63.2 \\ 68.4 \\ 77.4$	Existing models
RBA + LexLM RBA + PubMedBERT RBA + SapBERT	$80.4 \\ 83.7 \\ 90.7$	Existing models enriched with Lexical similarity + source synonymy
Re-Ranker (PubMedBERT) + RBA Signal	$\begin{array}{c} 85.5\\ 93.2 \end{array}$	New models (re-ranking)

Discussion

Performance conserved

- Across versions (UMLS insertion sets)
- Across categories (UMLS semantic groups)
- Importance of extending entity linking with "null injection"
- The deep learning models improve when augmented with basic information (lexical similarity and source synonymy)

Overall summary

 The UMLS Metathesaurus is a biomedical terminology integration system

- Metathesaurus construction has relied on a lexical model for synonymy and human review
- Supervised machine learning approaches to predicting synonymy have shown promising results

References

UMLS overview

 Bodenreider O. (2004). The Unified Medical Language System (UMLS): Integrating biomedical terminology. *Nucleic Acids Research*; D267-D270. PMID: 14681409.

Lexical approach

 McCray AT, Srinivasan S, Browne AC. Lexical methods for managing variation in biomedical terminologies. *Proc Annu Symp Comput Appl Med Care*. 1994:235-9. PMID: 7949926.

Supervised learning approach

- Nguyen V, Yip HY and Bodenreider O. Biomedical vocabulary alignment at scale in the UMLS Metathesaurus. *Proceedings of the Web Conference 2021 (WWW'21)*; 2672-2683. PMID: 34514472.
- Nguyen V, Yip HY, Bajaj G, Wijesiriwardene T, Javangula V, Parthasarathy S, Sheth A, Bodenreider O. Context-Enriched Learning Models for Aligning Biomedical Vocabularies at Scale in the UMLS Metathesaurus. *Proc Int World Wide Web Conf.* 2022 (WWW'22). PMID: 36108322.
- Jiménez Gutiérrez B, Mao Y, Nguyen V, Fung KW, Su Y, Bodenreider O. Solving the Right Problem is Key for Translational NLP: A Case Study in UMLS Vocabulary Insertion. *Findings of EMNLP 2023* (in press).

Medical Ontology Research

Contact: olivier@nlm.nih.gov Web: mor.nlm.nih.gov

Olivier Bodenreider

