

Weill Cornell Medicine Division of Health Informatics September 16, 2021

Health Informatics Seminar

Aligning biomedical terminologies From lexical models to supervised learning

Olivier Bodenreider, MD, PhD

Senior Scientist

Disclaimer

The views and opinions expressed do not necessarily state or reflect those of the U.S. Government, and they may not be used for advertising or product endorsement purposes.

Outline

Introduction to the UMLS Metathesaurus
Lexical model of synonymy
Supervised machine learning for synonymy prediction

Introduction to the UMLS Metathesaurus

What does UMLS stand for?

http://www.nlm.nih.gov/research/umls/

Motivation

Started in 1986

National Library of Medicine

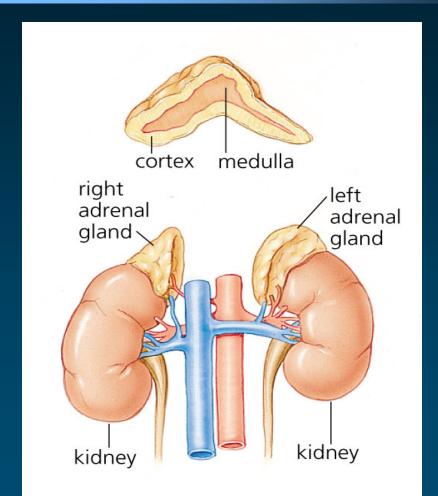
«[...] the UMLS project is an effort to overcome two significant barriers to effective retrieval of machine-readable information.

- The first is the variety of ways the same concepts are expressed in different machine-readable sources and by different people.
- The second is the distribution of useful information among many disparate databases and systems.»

UMLS Metathesaurus

(2021AA)

- ◆ 157 families of source vocabularies
 - Not counting 58 translations
- ♦ 25 languages
- Broad coverage of biomedicine
 - 12.5M names (normalized)
 - ~4.4M concepts
 - >10M relations
- Common presentation

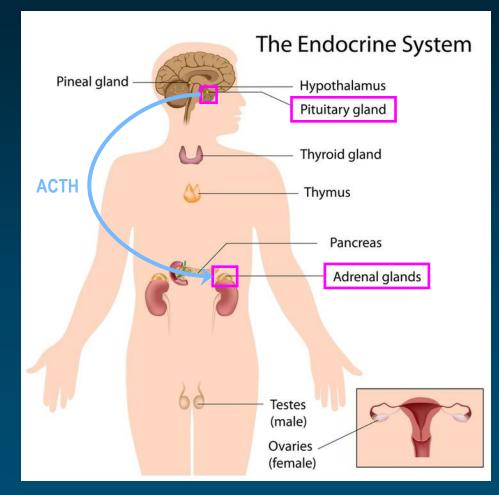


UMLS Metathesaurus

Overview through an example

Addison's disease

- Addison's disease is a rare endocrine disorder
- Addison's disease occurs when the adrenal glands do not produce enough of the hormone cortisol
- For this reason, the disease is sometimes called chronic adrenal insufficiency, or hypocortisolism



Adrenal insufficiency Clinical variants

Primary / Secondary

- Primary: lesion of the adrenal glands themselves
- Secondary: inadequate secretion of ACTH by the pituitary gland
- Acute / Chronic
- Isolated / Polyendocrine deficiency syndrome

Addison's disease: Symptoms

♦ Weakness

- Low blood pressure
- Pigmentation of the skin (exposed and nonexposed parts of the body)

AD in medical vocabularies

Synonyms: different terms

- Addisonian syndrome
- Bronzed disease
- Melasma addisonii
- Asthenia pigmentosa
- Primary adrenal deficiency
- Primary adrenal insufficiency
- Primary adrenocortical insufficiency
- Chronic adrenocortical insufficiency
- Contexts: different hierarchies

National Library of Medicine Lister Hill National Center for Biomedical Communications] eponym] symptoms clinical variants

Synonymous terms clustered into a concept
Preferred term

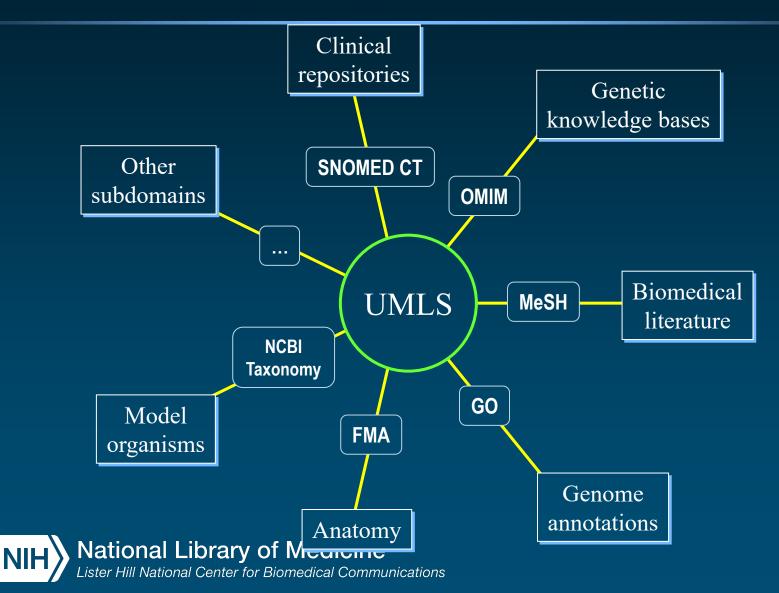
Unique identifier (CUI)

Addison Disease Primary hypoadrenalism Primary adrenocortical insufficiency Addison's disease (disorder)

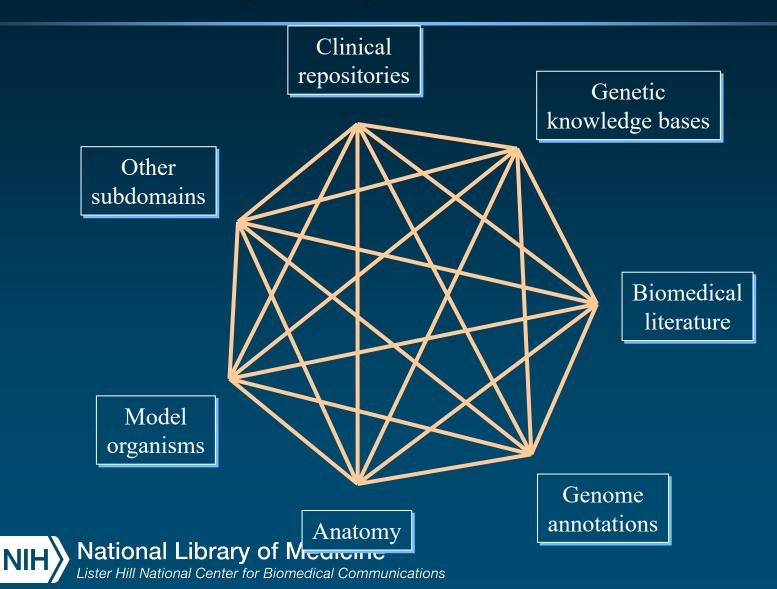
C0001403

MeSHD000224MedDRA10036696ICD-10E27.1SNOMED CT363732003

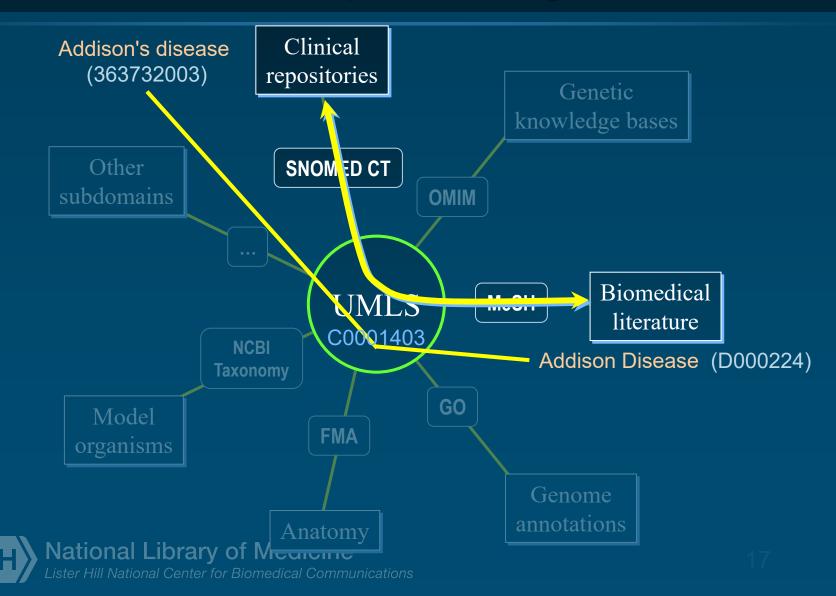
Addison's disease


Metathesaurus Concepts (2020AA)

 \bullet Concept (4.3M) CUI • Set of synonymous concept names (12.1M)LUI ◆ Term • Set of normalized names \diamond String (13.2M) SUI • Distinct concept name (15.5M)AUI ◆ Atom • Concept name in a given source

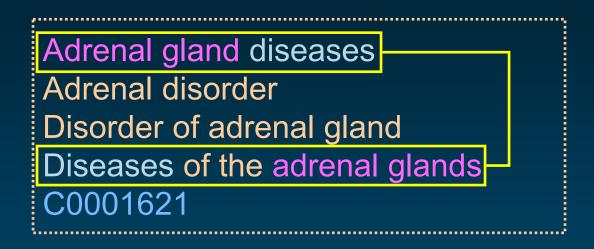


Integrating subdomains



15

Integrating subdomains



Trans-namespace integration

Lexical model of synonymy

From lexical features to synonymy

Lexical resources

SPECIALIST Lexicon and lexical tools

https://lhncbc.nlm.nih.gov/LSG/index.html

SPECIALIST Lexicon

Content

- English lexicon
- Many words from the biomedical domain
- Over 500,000 lexical items
- Word properties
 - morphology
 - orthography
 - syntax
- ◆ Used by the lexical tools

Morphology

Inflection

- noun nucleus, nuclei
- verb cauterize, cauterizes, cauterized, cauterizing
- adjective red, redder, reddest

Derivation

- verb 🔶 noun
- adjective ⇐ noun

cauterize -- cauterization

red -- redness

Orthography

Spelling variants

- oe/e
- ae/e
- ise/ize
- genitive mark

oesophagus - esophagus anaemia - anemia cauterise - cauterize Addison's disease Addison disease

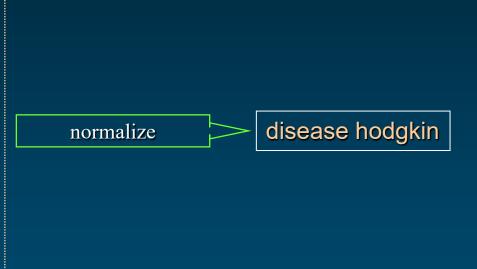
Addisons disease

SPECIALIST Lexicon record

base=hemoglobin (base form)
spelling_variant=haemoglobin
entry=E0031208 (identifier)
cat=noun (part of speech)
variants=uncount (no plural)
variants=reg (plural: hemoglobins)

Lexical tools

- To manage lexical variation in biomedical terminologies
- Major tools
 - Normalization
 - Indexes
 - Lexical Variant Generation program (lvg)
- Based on the SPECIALIST Lexicon
- ♦ Used by noun phrase extractors, search engines


Normalization

Normalization: Example

Hodgkin Disease HODGKINS DISEASE Hodgkin's Disease Disease, Hodgkin's Hodgkin's, disease HODGKIN'S DISEASE Hodgkin's disease Hodgkins Disease Hodgkin's disease NOS Hodgkin's disease, NOS Disease, Hodgkins Diseases, Hodgkins Hodgkins Diseases Hodgkins disease hodgkin's disease Disease, Hodgkin

Normalization Applications

- Model for lexical resemblance
- ◆ Help find lexical variants for a term
 - Terms that normalize the same usually share the same LUI
- Help find candidates to synonymy among terms
 Help map input terms to UMLS concepts

Principles for asserting synonymy in the UMLS Metathesaurus

- Lexical similarity is used to identify candidates for synonymy
 - Atoms that do not share a common semantics are prevented from being recognized as synonymous and grouped into the same concept

 Synonymy asserted between atoms in a source vocabulary tends to be conserved in the Metathesaurus

Example

String	Source	SCUI	AUI	LUI
Headache	MSH	M0009824	A0066000	L0018681
Headaches	MSH	M0009824	A0066008	L0018681
Cranial Pains	MSH	M0009824	A1641924	L1406212
Cephalodynia	MSH	M0009824	A26628141	L0380797
Cephalodynia	SNOMEDCT_US	25064002	A2957278	L0380797
Headache (finding)	SNOMEDCT_US	25064002	A3487586	L3063036

Metathesaurus building process

◆ All terms from source vocabularies are processed

- Terms that have the same normalized for are candidates for synonymy
 - Unless they bear different semantics
- Synonymy indicated by source vocabularies tends to be preserved
- All candidates (from normalization or sources) are reviewed manually
- Synonyms are assigned the same CUI
- ◆ Labor-intensive and error-prone

H National Library of Medicine Lister Hill National Center for Biomedical Communications Supervised machine learning for synonymy prediction

Intuition

- Large collection of synonymy assertions in Metathesaurus can be used for supervised learning
 - Positive examples: terms from the same concept
 - Negative examples: terms from different concepts
- Possible features
 - Lexical (words in a term)
 - Semantic (semantics of the source)
 - Relations to other terms

Synonymy function

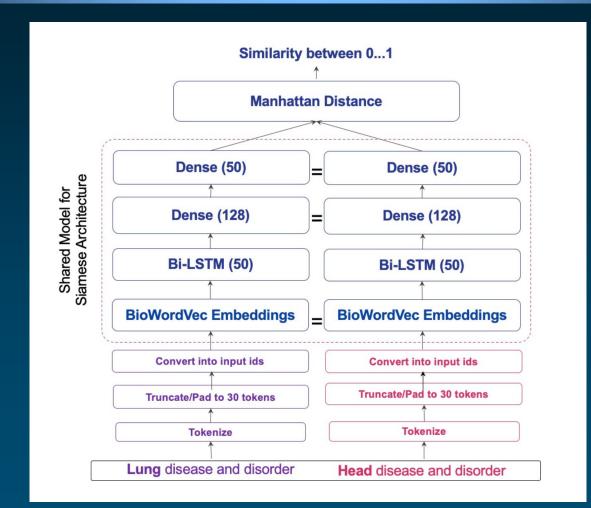
Addison Disease Primary hypoadrenalism Primary adrenocortical insufficiency Addison's disease (disorder) [...]

C0001403

Hodgkin Disease Granuloma, Malignant Hodgkin lymphoma Malignant lymphoma, Hodgkin's [...]

C0019829

syn("Addison Disease ", "Primary hypoadrenalism") = 1 syn("Addison Disease ", "Hodgkin Disease") = 0


Neural network architecture

Word embeddings

- Word vectors for representing terms
- Using BioWordVec
- Siamese LSTM network
- Similarity function = Manhattan distance

Neural network architecture

Learning experiments

Hypotheses

- More difficult to predict synonymy among lexically different terms than lexically similar terms
- More difficult to predict non-synonymy among lexically similar terms than among lexically different terms
- Experiments
 - Different degrees of lexical similarity among negative examples used for learning

Datasets

Туре	Positive	Negative	All
High similarity	22,324,834	55,909,551	78,234,385
Low similarity	22,324,834	55,909,551	78,234,385
No similarity	22,324,834	58,256,526	80,581,360
High+Low+No	22,324,834	170,075,628	192,400,462

Positive (selected pairwise within concepts) ("Addison Disease", "Primary hypoadrenalism") Negative (selected pairwise between concepts)

- *high sim: ("*Addison <u>Disease</u>", "Hodgkin <u>Disease</u>")
- *low sim:* ("Fracture of <u>left</u> rib", "Traumatic hematoma of <u>left</u> kidney ")
- *no sim:* ("Addison Disease", "Hodgkin lymphoma")

All models show good performance

Туре	F1	F1
	Training	Validation
High similarity	0.9521	0.9333
Low similarity	0.9887	0.9784
No similarity	0.9958	0.9899
High+Low+No	0.9480	0.9287

Good performance against unseen data **from the same dataset**

Some models generalize poorly

Model used for testing

	Туре	F1	F1	F1	F1
		High	Low	No	H+L+N
Model	High similarity	0.8740	0.9117	0.9217	0.7954
used	Low similarity	0.5678	0.9654	0.9768	0.5572
for	No similarity	0.3593	0.7943	0.9816	0.3286
testing	High+Low+No	0.8974	0.9469	0.9549	0.9061

Models not trained on high lexical similarity negative examples do not generalize well

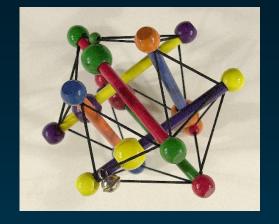
Deep learning vs. normalization and source synonymy

Туре	F1 High	F1 Low	F1 No	F1 H+L+N
Deep learning (High+Low+No)	0.8974	0.9469	0.9549	0.9061
Normalization+ Source synonymy	0.7672	0.8109	0.8145	0.7651

Deep learning model largely outperforms normalization+source synonymy

Discussion

- Encouraging results
 - Outperforms Normalization+Source synonymy
- Inclusion of lexically similar terms among negative examples is key to performance
- Areas for improvement
 - More sophisticated embeddings (e.g., BERT)
 - Integration of context (source synonymy, relations)
- Applications
 - Integration of new terminology into Metathesaurus



Summary

 The UMLS Metathesaurus is a biomedical terminology integration system

- Metathesaurus construction has relied on a lexical model for synonymy and human review
- Supervised machine learning approaches to predicting synonymy have shown promising results

Medical Ontology Research

Contact: olivier@nlm.nih.gov Web: mor.nlm.nih.gov

Olivier Bodenreider

References

UMLS overview

- Bodenreider O. (2004). The Unified Medical Language System (UMLS): Integrating biomedical terminology. *Nucleic Acids Research*; D267-D270.
- Supervised learning approach
 - Nguyen V, Yip HY and Bodenreider O. Biomedical vocabulary alignment at scale in the UMLS Metathesaurus. *Proceedings of the Web Conference 2021 (WWW'21)*; 2672-2683.

