Learning objectives

- Describe the history of biomedical ontologies
- Explain how clinical features are reflected in disease names
- List and describe the main biomedical ontologies used in 21st century healthcare
- Discuss the purpose of biomedical ontologies in knowledge management, clinical decision support and analytics
References

Review articles

Additional references

Outline

- Historical perspective
- Introduction to biomedical terminologies through an example

- “High-Impact” Biomedical Ontologies
 - Structural perspective

- Biomedical Ontologies “in Action”
 - Functional perspective
Clinical Terminology
Part 1

Historical perspective
To support a theory of diseases

- **Hippocrates**
 - Dismisses superstition
 - Four humors
 - Blood
 - Phlegm
 - Yellow bile
 - Black bile

- **Thomas Sydenham (1624-1689)**
 - *Medical observations on the history and cure of acute diseases* (1676)
To classify diseases (and plants)

- **Carolus Linnaeus (1707-1778)**
 - *Genera Plantarum* (1737)
 - *Genera Morborum* (1763)

- **François Boissier de La Croix a.k.a. F. B. de Sauvages (1706-1767)**
 - *Methodus Foliorum* (1751)
 - *Nosologia Methodica* (1763/68)

- **William Cullen (1710-1790)**
 - *Synopsis Nosologiae Methodicae* (1785)
From plants…
… to diseases

◆ Four categories (W. Cullen)
 ● Fevers
 ● Nervous disorders
 ● Cachexias
 ● Local diseases

“The distinction of the genera of diseases, the distinction of the species of each, and often even that of the varieties, I hold to be a necessary foundation of every plan of physic, whether dogmatical or empirical.”
– William Cullen, Edinburgh, 1785
Synopsis Nosologia Methodicae

(Cited by Chris Chute)
London Bills of Mortality

A general Bill for this present year, ending the 19th of December 1665, according to the Report made to the King's Most Excellent Majesty, by the Company of Parish Clerks of London, &c.

The Diseases and Casualties this year:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>bachis</td>
<td>65</td>
</tr>
<tr>
<td>Aged</td>
<td>154</td>
</tr>
<tr>
<td>Acon and Fever</td>
<td>517</td>
</tr>
<tr>
<td>Apples and Suddenly</td>
<td>715</td>
</tr>
<tr>
<td>Bedesm</td>
<td>18</td>
</tr>
<tr>
<td>Bleeding</td>
<td>16</td>
</tr>
<tr>
<td>Bodey Flux, Scurvy & Flux 18</td>
<td>127</td>
</tr>
<tr>
<td>Burnt and Scalded</td>
<td>8</td>
</tr>
<tr>
<td>Cancer, Gangrene and Fihune</td>
<td>56</td>
</tr>
<tr>
<td>Canker, and Thrush</td>
<td>15</td>
</tr>
<tr>
<td>Childbed</td>
<td>625</td>
</tr>
<tr>
<td>Christons and Infants</td>
<td>183</td>
</tr>
<tr>
<td>Cold and Cough</td>
<td>62</td>
</tr>
<tr>
<td>Collick and Winder</td>
<td>13</td>
</tr>
<tr>
<td>Consumption and Thieck</td>
<td>488</td>
</tr>
<tr>
<td>Convulsion and Mother</td>
<td>1035</td>
</tr>
<tr>
<td>Diftered, Measles</td>
<td>87</td>
</tr>
<tr>
<td>Drowded and Company</td>
<td>71</td>
</tr>
<tr>
<td>Ecleis</td>
<td>15</td>
</tr>
<tr>
<td>Female</td>
<td>485</td>
</tr>
<tr>
<td>Bailshd, Mustered and Shot</td>
<td>69</td>
</tr>
<tr>
<td>In the Bills in the 158</td>
<td>920</td>
</tr>
<tr>
<td>Increased in the Pest-house</td>
<td>839</td>
</tr>
<tr>
<td>Increased of the Pest-house</td>
<td>920</td>
</tr>
</tbody>
</table>

London Bills of Mortality

1. O. N. D. O. N.'s Dreadful Visitation: Or, A Collection of All the Bills of Mortality

For this Present Year:
Beginning the 27th of December 1664, and ending the 19th of December following.
As also, The GENERAL or whole years BILL:
According to the Report made to the King's Most Excellent Majesty,
By the Company of Parish Clerks of London, &c.

LONDON:
Printed and are to be sold by B. Crook living in Aldersgate-street. Printer to the Said Company 1665.
To support epidemiology

- **John Graunt (1620-1674)**
 - Analyzes the vital statistics of the citizens of London

- **William Farr (1807-1883)**
 - Medical statistician
 - Improves Cullen’s classification
 - Contributes to creating ICD

- **Jacques Berthillon (1851-1922)**
 - Chief of the statistical services (Paris)
 - Classification of causes of death (161 rubrics)
“The advantages of a uniform statistical nomenclature, however imperfect, are so obvious, that it is surprising no attention has been paid to its enforcement in Bills of Mortality. Each disease has, in many instances, been denoted by three or four terms, and each term has been applied to as many different diseases: vague, inconvenient names have been employed, or complications have been registered instead of primary diseases. The nomenclature is of as much importance in this department of inquiry as weights and measures in the physical sciences, and should be settled without delay.”

– William Farr

First annual report.
From “bad air” to “bad water” (John Snow)
History of Medical Ontologies

Synopsis Nosologiae Methodicae

1603 1975
1700 1985 1855 1900 1975

ICD ICD9

ICPC SNOP

OPCS CPT

EmTree UMLS

SNOMED-2 SNOMED International SNOMED-RT SNOMED-CT

OPCS3 OPCS4 OPCS4.3

[Based on Bodenreider, BIB 2006]
Clinical Terminology
Part 2

Introduction to biomedical terminologies through an example
Guy’s Hospital, London
Thomas Addison (1795-1860)
Addison's disease is a rare endocrine disorder. Addison's disease occurs when the adrenal glands do not produce enough of the hormone cortisol. For this reason, the disease is sometimes called chronic adrenal insufficiency, or hypocortisolism.
Adrenal insufficiency Clinical variants

◆ Primary / Secondary
 ● Primary: lesion of the adrenal glands themselves
 ● Secondary: inadequate secretion of ACTH by the pituitary gland

◆ Acute / Chronic

◆ Isolated / Polyendocrine deficiency syndrome
Addison’s disease: Symptoms

- Fatigue
- Weakness
- Low blood pressure
- Pigmentation of the skin (exposed and non-exposed parts of the body)
- …
AD in medical vocabularies

◆ Synonyms: different terms
 - Addisonian syndrome
 - Bronzed disease
 - Addison melanoderma
 - Asthenia pigmentosa
 - Primary adrenal deficiency
 - Primary adrenal insufficiency
 - Primary adrenocortical insufficiency
 - Chronic adrenocortical insufficiency

◆ Contexts: different hierarchies

 eponym
 symptoms
 clinical
 variants
Internal Classification of Diseases

IV Endocrine, nutritional and metabolic diseases

E00-E07 Disorders of thyroid gland
E10-E14 Diabetes mellitus
E15-E16 Other disorders of glucose regulation and pancreatic internal secretion

E20-E35 Disorders of other endocrine glands

E20 Hypoparathyroidism
E21 Hyperparathyroidism and other disorders of parathyroid gland
E22 Hyperfunction of pituitary gland
E23 Hypofunction and other disorders of pituitary gland

E24 Cushing syndrome
E25 Adrenogenital disorders
E26 Hyperaldosteronism

E27 Other disorders of adrenal gland

E27.0 Other adrenocortical overactivity

E27.1 Primary adrenocortical insufficiency

E27.2 Addisonian crisis
Adrenal crisis
Adrenocortical crisis

E27.3 Drug-induced adrenocortical insufficiency
Use additional external cause code (Chapter XX), if desired, to identify drug.

E27.4 Other and unspecified adrenocortical insufficiency
Adrenal:
- haemorrhage
- infarction
Adrenocortical insufficiency NOS
Hypoaldosteronism

Excl.: adrenoleukodystrophy [Addison-Schilder] (E71.3)
Waterhouse-Friderichsen syndrome (A39.1)

E27.5 Adrenomedullary hyperfunction
Adrenomedullary hyperplasia
Catecholamine hypersecretion

E27.8 Other specified disorders of adrenal gland
Abnormality of cortisol-binding globulin

E27.9 Disorder of adrenal gland, unspecified
Medical Subject Headings

MeSH Tree Structures

Endocrine System Diseases [C19]
Adrenal Gland Diseases [C19.053]
Adrenal Insufficiency [C19.053.500]
 ▶ Addison Disease [C19.053.500.263]
 Adrenoleukodystrophy [C19.053.500.270]
 Hypoaldosteronism [C19.053.500.480]
 Waterhouse-Friderichsen Syndrome [C19.053.500.740]

Immune System Diseases [C20]
Autoimmune Diseases [C20.111]
 ▶ Addison Disease [C20.111.163]
 Anemia, Hemolytic, Autoimmune [C20.111.175]
 Anti-Glomerular Basement Membrane Disease [C20.111.190]
 Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis [C20.111.193] +
 Antiphospholipid Syndrome [C20.111.197]
 Arthritis, Juvenile [C20.111.198]
 Arthritis, Rheumatoid [C20.111.199] +
 Autoimmune Diseases of the Nervous System [C20.111.258] + [...]

[Image: MeSH Tree Structures]
Clinical Terminology
Part 3

“High-Impact” Biomedical Ontologies
A Structural Perspective
Overview

◆ Structural perspective
 • What are they (vs. what are they for)?

◆ “High-impact” biomedical ontologies [J. Cimino, YBMI 2006]
 • International Classification of Diseases (ICD)
 • Logical Observation Identifiers, Names and Codes (LOINC)
 • SNOMED Clinical Terms
 • Foundational Model of Anatomy
 • Gene Ontology
 • RxNorm
 • Medical Subject Headings (MeSH)
 • NCI Thesaurus
 • Unified Medical Language System (UMLS)
International Classification of Diseases
ICD Characteristics (1)

- Current version: ICD-10 (2017)
 - Annual updates
- Type: Classification
- Domain: Disorders
- Developer: World Health Organization (WHO)
- Funding: WHO
- Publicly available: Yes
- Used for: Mortality and morbidity statistics worldwide
- URL: http://www.who.int/classifications/icd/en/
ICD Characteristics (2)

- **Number of**
 - Terms: 1 per concept (tabular)

- **Major organizing principles:**
 - Tree (single inheritance hierarchy)
 - No explicit classification criteria
 - Idiosyncratic inclusion/exclusion mechanism
 - .8 slots for *Not elsewhere classified* (NEC)
 - .9 slots for *Not otherwise specified* (NOS)

- **Specific coding rules**

- **Distribution:** Proprietary format
ICD Top level

ICD-10 Version: 2016

- I Certain infectious and parasitic diseases
- II Neoplasms
- III Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism
- IV Endocrine, nutritional and metabolic diseases
- V Mental and behavioural disorders
- VI Diseases of the nervous system
- VII Diseases of the eye and adnexa
- VIII Diseases of the ear and mastoid process
- IX Diseases of the circulatory system
- X Diseases of the respiratory system
- XI Diseases of the digestive system
- XII Diseases of the skin and subcutaneous tissue
- XIII Diseases of the musculoskeletal system and connective tissue
- XIV Diseases of the genitourinary system
- XV Pregnancy, childbirth and the puerperium
- XVI Certain conditions originating in the perinatal period
- XVII Congenital malformations, deformations and chromosomal abnormalities
- XVIII Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified
- XIX Injury, poisoning and certain other consequences of external causes
- XX External causes of morbidity and mortality
- XXI Factors influencing health status and contact with health services
- XXII Codes for special purposes
ICD Example

Idiosyncratic inclusion/exclusion criteria

Type 1 diabetes mellitus

Incl.: diabetes (mellitus):
- brittle
- juvenile-onset
- ketosis-prone

Excl.: diabetes mellitus (in):
- malnutrition-related (E12.-)
- neonatal (P70.2)
- pregnancy, childbirth and the puerperium (O24.-)

glycosuria:
- NOS (R81)
- renal (E74.8)

impaired glucose tolerance (R73.0)
postsurgical hypoinsulinaemia (E89.1)
ICD Example

- *Not elsewhere classified* (NEC)
- *Not otherwise specified* (NOS)
ICD-10-CM

- Derived from: ICD-10
 - Finer-grained (both clinically and administratively)
- Type: Classification
 - 92,042 codes (2015)
 - Terms: 1.2 per concept
- Domain: Disorders
- Developer: National Center for Health Statistics (NCVHS)
- Funding: U.S. Government
- Publicly available: Yes
- Used for: Billing
- URL: http://www.cdc.gov/nchs/icd/icd10cm.htm
ICD-10 vs. ICD-10-CM

E72 Other disorders of amino-acid metabolism

Excl.: abnormal findings without manifest disease (R78.4)

- disorders of:
 - aromatic amino-acid metabolism (E70.1)
 - branched-chain amino-acid metabolism (E71.0-E71.2)
 - fatty-acid metabolism (E71.3)
 - purine and pyrimidine metabolism (E79.-)
 - gout (M10.-)

E72.0 Disorders of amino-acid transport

- Cystine storage disease† (N29.8*)
- Cystinosis
- Cystinuria
- Fanconi(-de Toni)(-Debré) syndrome
- Hartnup disease
- Lowe syndrome

Excl.: disorders of tryptophan metabolism (E70.8)

E72.00 Disorders of amino-acid transport, unspecified

E72.01 Cystinuria

E72.02 Hartnup's disease

E72.03 Lowe's syndrome

Use additional code for associated glaucoma (H42)

E72.04 Cystinosis

Fanconi (-de Toni) (-Debré) syndrome with cystinosis

*Excludes1: Fanconi (-de Toni) (-Debré) syndrome with
cystinosis

E72.09 Other disorders of amino-acid transport

Fanconi (-de Toni) (-Debré) syndrome, unspecified
ICD-10 vs. ICD-10-CM

W58 Contact with crocodile or alligator

The appropriate 7th character is to be added to each code from category W58.
- A - initial encounter
- D - subsequent encounter
- S - sequela

W58.0 Contact with alligator

- W58.01 Bitten by alligator
- W58.02 Struck by alligator
- W58.03 Crushed by alligator
- W58.09 Other contact with alligator

W58.1 Contact with crocodile

- W58.11 Bitten by crocodile
- W58.12 Struck by crocodile
- W58.13 Crushed by crocodile
- W58.19 Other contact with crocodile

W58.01A Bitten by alligator, initial encounter
W58.01D Bitten by alligator, subsequent encounter
W58.01S Bitten by alligator, sequela
Logical Observation Identifiers, Names and Codes (LOINC)
LOINC Characteristics (1)

- Current version: 2.59 (Feb. 2017)
 - 2 annual releases
- Type: Controlled terminology*
- Domain: Laboratory and clinical observations
- Developer: Regenstrief Institute
- Funding: NLM and other sources
- Publicly available: Yes
- Used for: information exchange
- URL: https://loinc.org/
LOINC Characteristics (2)

- **Number of**
 - Concepts: 73,958 active codes (2.52, June 2015)
 - Terms: 1 per concept (“long name”)

- **Major organizing principles:**
 - No hierarchical structure among the main codes
 - 6 axes
 - Component (analyte [+ challenge] [+ adjustments])
 - Property
 - Timing
 - System
 - Scale
 - [Method]

- **Distribution:** proprietary database format
LOINC Example

- **Sodium [Moles/volume] in Serum or Plasma**
 [the molar concentration of sodium is measured in the plasma (or serum), with quantitative result]

<table>
<thead>
<tr>
<th>Axis</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>Sodium</td>
</tr>
<tr>
<td>Property</td>
<td>SCnc – Substance Concentration (per volume)</td>
</tr>
<tr>
<td>Timing</td>
<td>Pt – Point in time (Random)</td>
</tr>
<tr>
<td>System</td>
<td>Ser/Plas – Serum or Plasma</td>
</tr>
<tr>
<td>Scale</td>
<td>Qn – Quantitative</td>
</tr>
<tr>
<td>Method</td>
<td>--</td>
</tr>
</tbody>
</table>
2951-2 Sodium [Moles/volume] in Serum or Plasma

NAME

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Time</th>
<th>System</th>
<th>Scale</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>SCnc</td>
<td>Pt</td>
<td>Ser/Plas</td>
<td>Qn</td>
<td></td>
</tr>
</tbody>
</table>

PART DEFINITION/DESCRIPTION(S)

Sodium is an essential nutrient that regulates blood volume, blood pressure, osmotic equilibrium and electrolyte balance. Sodium chloride is the principal source of sodium in the diet, and is used for seasoning and as a preservative. Increased levels of sodium intake can cause hypertension and reportedly leads to 7.6 million premature deaths worldwide. Sodium is also important in neuron function and osmoregulation between cells and the extracellular fluid.

Copyright: Text is available under the Creative Commons Attribution/Share-Alike License. See http://creativecommons.org/licenses/by-sa/3.0/ for details.

Source: Wikipedia, URL: [Sodium (Wikipedia)](http://en.wikipedia.org/wiki/Sodium)

BASIC ATTRIBUTES

- **Class/Type:** CHEM/Lab
- **CDISC Lab Test:** Y
- **Common Lab Results Rank:** #5
- **Common SI Lab Results Rank:** #5
- **Common Orders Rank:** #107
- **Last Updated in Version:** 2.34
- **Order vs. Obs.:** Both
- **Status:** Active

EXAMPLE UNITS

- **Unit**
 - mmol/L
 - mmol/L
 - mmol/L

- **Source Type**
 - EXAMPLE UCUM UNITS
 - REGENSTrief
 - eCHN

UNITS AND RANGE

- **Range**
 - mmol/L [136,145]
SNOMED Clinical Terms
SNOMED CT Characteristics (1)

- Current version: January 31, 2017
 - 2 annual releases
- Type: Reference terminology / ontology
- Domain: Clinical medicine
- Developer: IHTSDO
- Funding: IHTSDO member countries
- Publicly available: Yes*
- Used for: clinical documentation, information exchange, analytics
- URL: http://www.ihtsdo.org/
SNOMED CT Characteristics (2)

- **Number of**
 - Concepts: 320,912 active concepts (Sept. 2016)
 - Terms: 2.6 per concept (“descriptions”)

- **Major organizing principles:**
 - Polyhierarchy
 - Rich set of associative relationships
 - Logical definitions (incomplete: many primitives)
 - Built using description logics (EL++)

- **Distribution:** RF2 (proprietary)
SNOMED CT Top level

- SNOMED CT Concept
 - Body structure (body structure)
 - Clinical finding (finding)
 - Environment or geographical location (environment / location)
 - Event (event)
 - Observable entity (observable entity)
 - Organism (organism)
 - Pharmaceutical / biologic product (product)
 - Physical force (physical force)
 - Physical object (physical object)
 - Procedure (procedure)
 - Qualifier value (qualifier value)
 - Record artifact (record artifact)
 - Situation with explicit context (situation)
 - SNOMED CT Model Component (metadata)
 - Social context (social concept)
 - Special concept (special concept)
 - Specimen (specimen)
 - Staging and scales (staging scale)
 - Substance (substance)
SNOMED CT Example

Parents
- Operation on appendix (procedure)
- Partial excision of large intestine (procedure)

Appendectomy (procedure)
SCTID: 80146002
80146002 | Appendectomy (procedure) |
 Appendectomy
 Excision of appendix
 Appendicectomy
 Appendectomy (procedure)

Procedure site - Direct → Appendix structure
Method → Excision - action

Children (8)
- Appendectomy with drainage (procedure)
- Emergency appendectomy (procedure)
- Excision of appendiceal stump (procedure)
- Excision of ruptured appendix by open approach (procedure)
- Incidental appendectomy (procedure)
- Interval appendectomy (procedure)
- Laparoscopic appendectomy (procedure)
- Non-emergency appendectomy (procedure)
SNOMED CT Example

80146002
Appendectomy (procedure)

27010001
Partial excision of large intestine (procedure)

8613002
Operation on appendix (procedure)

405813007
Procedure site - Direct (attribute)

66754008
Appendix structure (body structure)

260686004
Method (attribute)

129304002
Excision - action (qualifier value)
RxNorm Characteristics (1)

- Current version: March 2017
 - Monthly releases (+weekly updates)
- Type: Controlled terminology
- Domain: Drug names
- Developer: NLM
- Funding: NLM
- Publicly available: Yes*
- Used for: e-prescribing, information exchange, analytics
RxNorm Characteristics (2)

- **Number of**
 - Concepts: 117,774 (March 2016)
 - Terms: 1.5 per concept

- **Major organizing principles:**
 - Generic vs. brand
 - Ingredient + Strength + Dose form
 - No hierarchical structure; rich graph of associative relations
 - Integrates all major US drug information sources
 - No clinical information

- **Distribution:** similar to UMLS RRF format
RxNorm Normalized form

- **Strength**: 4mg/ml
- **Ingredient**: Fluoxetine
- **Dose form**: Oral Solution

Semantic clinical drug component

Semantic clinical drug form

Semantic clinical drug
RxNorm Example

Ingredient
Azithromycin

C. Drug Comp.
Azithromycin 250 MG

C. Drug Form
Azithromycin Oral Tablet

C. Drug
Azithromycin 250 MG Oral Tablet

B. Drug Comp.
Azithromycin 250 MG

B. Drug Form
Azithromycin Oral Tablet [Zithromax]

B. Drug
Zithromax 250 MG Oral Tablet

B. Pack
Z-PAK

G. Pack
{6 (Azithromycin 250 MG Oral Tablet) } Pack
Warfarin [RxCUI = 11289]

<table>
<thead>
<tr>
<th>IN/MIN</th>
<th>PIN</th>
<th>BN</th>
</tr>
</thead>
<tbody>
<tr>
<td>H Rx S Warfarin</td>
<td>S</td>
<td>H Rx S Coumadin</td>
</tr>
<tr>
<td>S Warfarin Potassium</td>
<td></td>
<td>H Rx S Jantoven</td>
</tr>
<tr>
<td>H Rx S Warfarin Sodium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCDC

<table>
<thead>
<tr>
<th>S Warfarin Sodium 0.5 MG</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Warfarin Sodium 1 MG</td>
</tr>
<tr>
<td>S Warfarin Sodium 10 MG</td>
</tr>
<tr>
<td>S Warfarin Sodium 2 MG</td>
</tr>
</tbody>
</table>

SBDC

<table>
<thead>
<tr>
<th>H Rx S Warfarin Sodium 1 MG [Coumadin]</th>
</tr>
</thead>
<tbody>
<tr>
<td>H Rx S Warfarin Sodium 1 MG [Jantoven]</td>
</tr>
</tbody>
</table>

SCD/GPCK

<table>
<thead>
<tr>
<th>S Warfarin Sodium 0.5 MG Oral Tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Warfarin Sodium 1 MG Oral Tablet</td>
</tr>
<tr>
<td>S Warfarin Sodium 10 MG Oral Tablet</td>
</tr>
<tr>
<td>S Warfarin Sodium 2 MG Oral Tablet</td>
</tr>
</tbody>
</table>

SBD/BPCK

<table>
<thead>
<tr>
<th>H Rx S Coumadin 1 MG Oral Tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td>H Rx S Coumadin 10 MG Oral Tablet</td>
</tr>
<tr>
<td>H Rx S Coumadin 2 MG Oral Tablet</td>
</tr>
</tbody>
</table>

SCDG

<table>
<thead>
<tr>
<th>S Warfarin Injectable Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Warfarin Oral Product</td>
</tr>
<tr>
<td>S Warfarin Pill</td>
</tr>
</tbody>
</table>

DFG

<table>
<thead>
<tr>
<th>H V Rx S Injectable Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>H Rx S Oral Product</td>
</tr>
<tr>
<td>H Rx S Pill</td>
</tr>
</tbody>
</table>

SBDG

<table>
<thead>
<tr>
<th>S Coumadin Injectable Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Coumadin Oral Product</td>
</tr>
<tr>
<td>S Coumadin Pill</td>
</tr>
<tr>
<td>S Jantoven Oral Product</td>
</tr>
</tbody>
</table>
Clinical Terminology
Part 4

Biomedical Ontologies “in Action”

A Functional Perspective
Overview

◆ Functional perspective
 ● What are they for (vs. what are they)?

◆ “High-impact” biomedical ontologies

◆ 3 major categories of use
 ● Knowledge management (indexing and retrieval of data and information, access to information, mapping among ontologies)
 ● Data integration, exchange and semantic interoperability
 ● Decision support and analytics (data selection and aggregation, decision support, natural language processing applications, knowledge discovery)

[Bodenreider, YBMI 2008]
Knowledge management
Knowledge management

Annotating data and resources
Terminology in ontology

- **Ontology as a source of vocabulary**
 - List of names for the entities in the ontology (ontology vs. terminology)

- **Most ontologies have some sort of terminological component**

- **Not all surface forms represented**
 - Often insufficient for NLP applications
 - Large variation in number of terms per concept across ontologies
Annotating data

- **Gene Ontology**
 - Functional annotation of gene products in several dozen model organisms

- **Various communities use the same controlled vocabularies**

- **Enabling comparisons across model organisms**

- **Annotations**
 - Assigned manually by curators
 - Inferred automatically (e.g., from sequence similarity)
GO Annotations across species

ALDH2 aldehyde dehydrogenase 2 family (mitochondrial) [*Homo sapiens* (human)]

<table>
<thead>
<tr>
<th>Function</th>
<th>Evidence Code</th>
<th>Pubs</th>
</tr>
</thead>
<tbody>
<tr>
<td>aldehyde dehydrogenase (NAD) activity</td>
<td>EXP</td>
<td>PubMed</td>
</tr>
<tr>
<td>aldehyde dehydrogenase (NAD) activity</td>
<td>IDA</td>
<td></td>
</tr>
<tr>
<td>aldehyde dehydrogenase [NAD(P)+] activity</td>
<td>TAS</td>
<td>PubMed</td>
</tr>
<tr>
<td>electron carrier activity</td>
<td>TAS</td>
<td></td>
</tr>
</tbody>
</table>

Aldh2 aldehyde dehydrogenase 2, mitochondrial [*Mus musculus* (house mouse)]

<table>
<thead>
<tr>
<th>Function</th>
<th>Evidence Code</th>
<th>Pubs</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADH binding</td>
<td>ISO</td>
<td></td>
</tr>
<tr>
<td>aldehyde dehydrogenase (NAD) activity</td>
<td>IBA</td>
<td></td>
</tr>
<tr>
<td>aldehyde dehydrogenase (NAD) activity</td>
<td>ISO</td>
<td></td>
</tr>
<tr>
<td>identical protein binding</td>
<td>ISO</td>
<td></td>
</tr>
<tr>
<td>oxidoreductase activity</td>
<td>IEA</td>
<td></td>
</tr>
<tr>
<td>oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor</td>
<td>IEA</td>
<td></td>
</tr>
<tr>
<td>protein binding</td>
<td>IP</td>
<td>PubMed</td>
</tr>
</tbody>
</table>
Indexing the biomedical literature

◆ MeSH
 ● Used for indexing and retrieval of the biomedical literature (MEDLINE)

◆ Indexing
 ● Performed manually by human indexers
 - With help of semi-automatic systems (suggestions)
 e.g., Indexing Initiative at NLM
 ● Specific indexing rules
Free cortisol in sepsis and septic shock.

Bendel S¹, Karlsson S, Pettilä V, Loisa P, Varpula M, Ruokonen E; Finnsepsis Study Group.

Abstract

BACKGROUND: Severe sepsis activates the hypothalamopituitary axis, increasing cortisol production. In some studies, hydrocortisone substitution based on an adrenocorticotropic hormone-stimulation test or baseline cortisol measurement has improved outcome. Because only the free fraction of cortisol is active, measurement of free cortisol may be more important than total cortisol in critically ill patients. We measured total and free cortisol in patients with severe sepsis and related the concentrations to outcome.

METHODS: In a prospective study, severe sepsis was defined according the American College of Chest Physicians/Society of Critical Care Medicine criteria. Blood samples were drawn within 24 h of study entry. Serum cortisol was analyzed by electrochemiluminescence immunoassay. The Coolens method was used for calculating serum free cortisol concentrations.

RESULTS: Blood samples were collected from 125 patients, of whom 62 had severe sepsis and 63 septic shock. Hospital mortality was 21%. Calculated free serum cortisol correlated well with serum total cortisol (r = 0.90, P < 0.001). There was no difference in the total cortisol concentrations in patients with sepsis and septic shock (728 +/- 386 nmol/L vs 793 +/- 439 nmol/L, P = 0.44). Nonsurvivors had higher calculated serum free (209 +/- 151 nmol/L) and total (980 +/- 458 nmol/L) cortisol concentrations than survivors (119 +/- 111 nmol/L, P = 0.002, and 704 +/- 383 nmol/L, P = 0.002). Depending on the definition, the incidence of adrenal insufficiency varied from 8% to 54%.

CONCLUSIONS: Clinically, calculation of free cortisol does not provide essential information for identification of patients who would benefit from corticoid treatment in severe sepsis and septic shock.

PMID: 18499615 [PubMed - indexed for MEDLINE]
MeSH MEDLINE indexing

MeSH Terms
- Adrenal Cortex Function Tests
- Adrenal Insufficiency/blood*
- Adrenal Insufficiency/drug therapy
- Adrenal Insufficiency/mortality
- Adult
- Biomarkers/blood
- Female
- Finland/epidemiology
- Hospital Mortality
- Humans
- Hydrocortisone/blood*
- Hydrocortisone/therapeutic use
- Kaplan-Meier Estimate
- Male
- Predictive Value of Tests
- Prospective Studies
- Sepsis/blood*
- Sepsis/drug therapy
- Sepsis/mortality
- Severity of Illness Index
- Shock, Septic/blood*
- Shock, Septic/drug therapy
- Shock, Septic/mortality
- Treatment Outcome
SNOMED CT/ICD Coding clinical data

◆ SNOMED CT
 • Used for clinical documentation
 • E.g., problem lists

◆ ICD-10-CM
 • Used for coding clinical data for billing purposes
 • Other uses of ICD
 ◦ Morbidity and mortality reporting worldwide
 • Specific coding rules
Knowledge management

Accessing biomedical information
Resources for biomedical search engines

- Synonyms
- Hierarchical relations
- High-level categorization
- [Co-occurrence information]
- Translation
MeSH “synonyms” MEDLINE retrieval

- MeSH entry terms
 - Used as equivalent terms for retrieval purposes (query expansion)
 - Not always synonymous

- Increase recall without hurting precision

<table>
<thead>
<tr>
<th>MeSH Heading</th>
<th>Entry Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addison Disease</td>
<td>Addison's Disease</td>
</tr>
<tr>
<td></td>
<td>Primary Adrenal Insufficiency</td>
</tr>
<tr>
<td></td>
<td>Primary Adrenocortical Insufficiency</td>
</tr>
<tr>
<td></td>
<td>Primary Hypoadrenalism</td>
</tr>
</tbody>
</table>
MeSH “synonyms” MEDLINE retrieval

Search details

"addison disease"[MeSH Terms] OR
("addison"[All Fields] AND "disease"[All Fields]) OR "addison disease"[All Fields] OR
("primary"[All Fields] AND "hypoadrenalism"[All Fields]) OR
"primary hypoadrenalism"[All Fields]
MeSH hierarchies MEDLINE retrieval

- MeSH “explosion”
 - Search for a given MeSH term and all its descendants
 - A search on Adrenal insufficiency also retrieves articles indexed with its descendant, Addison disease

PubMed search example:

- Adrenal insufficiency in prolonged critical illness.
 - Wu JY, Hsu SC, Ku SC, Ho CC, Yu CJ, Yang PC.
 - PMID: 18466605 Free PMC Article

- Addison's disease: a rare cause of hypertransaminasaemia.
 - Ersan O, Demirezer B.
 - PMID: 18465237

MeSH Terms:
- Adrenal Insufficiency/blood
- Adrenal Insufficiency/drug therapy
- Adrenal Insufficiency/mortality*

MeSH Terms:
- Addison Disease/blood*
- Addison Disease/complications
- Addison Disease/diagnosis*
Knowledge management

Mapping across biomedical ontologies
Terminology integration systems

- Terminology integration systems (UMLS, RxNorm) help bridge across vocabularies

- Uses
 - Information integration
 - Ontology alignment
 - Medication reconciliation
Integrating subdomains

Clinical repositories

Genetic knowledge bases

Other subdomains

SNOMED CT

OMIM

Biomedical literature

NCBI Taxonomy

MeSH

Genome annotations

Model organisms

FMA

GO

Anatomy

UMLS
Integrating subdomains

- Clinical repositories
- Genetic knowledge bases
- Biomedical literature
- Genome annotations
- Anatomy
- Model organisms
- Other subdomains
Trans-namespace integration

Addison's disease (363732003)

Clinical repositories

SNOMED CT

Genetic knowledge bases

OMIM

Genome annotations

Addison Disease (D000224)

Biomedical literature

UMLS C0001403

NCBI Taxonomy

FMA

GO

Anatomy

Other subdomains

Model organisms
UMLS Source Vocabularies

◆ 153 families of source vocabularies
 ● Not counting translations
◆ 25 languages
◆ Broad coverage of biomedicine
 ● 9.8M names (normalized)
 ● 3.2M concepts
 ● ~13M relations among concepts
◆ Common presentation
Metathesaurus Basic organization

◆ Concepts
 - Synonymous terms are clustered into a concept
 - Properties are attached to concepts, e.g.,
 - Unique identifier
 - Definition

◆ Relations
 - Concepts are related to other concepts
 - Properties are attached to relations, e.g.,
 - Type of relationship
 - Source
Decision support and analytics

Value sets and clinical quality measures
Clinical quality measures (CQMs)

- Measure and track the quality of healthcare services provided by eligible professionals, eligible hospitals and critical access hospitals within our health care system
- Measure many aspects of patient care including
 - Health outcomes
 - Clinical processes
 - Patient safety
 - Efficient use of healthcare resources
 - Care coordination
 - Patient engagement
 - Population and public health
 - Clinical guidelines

https://www.cms.gov/
Clinical quality measures (example)

Hemoglobin A1c Test for Pediatric Patients

Hemoglobin Sugar

- Normal glucose levels in blood
- Low HbA1c concentration

- High glucose levels in blood
- High HbA1c concentration
Clinical recommendations

1. **American Association of Clinical Endocrinologists (2002):** Recommends that *a glycosylated hemoglobin be performed during an initial assessment and during follow-up assessments*, which should occur at no longer than three-month intervals.

2. **American Diabetes Association (2006):** Recommends *obtaining a glycosylated hemoglobin during an initial assessment and then routinely as part of continuing care*. In the absence of well-controlled studies that suggest a definite testing protocol, expert opinion recommends glycosylated hemoglobin be obtained at least twice a year in patients who are meeting treatment goals and who have stable glycemic control and more frequently (quarterly assessment) in patients whose therapy was changed or who are not meeting glycemic goals.
Hemoglobin A1c Test for Pediatric Patients

diabetic patients [age 5-17] tested for HbA1c

=

diabetic patients [age 5-17]
Hemoglobin A1c Test for Pediatric Patients

diabetic patients [age 5-17] tested for HbA1c

Tests for HbA1c

- Type 1 or Type 2 diabetes
- Excludes gestational diabetes
- Requires date of birth
Hemoglobin A1c Test for Pediatric Patients

diabetic patients [age 5-17] tested for HbA1c

- Type 1 or Type 2 diabetes
- Excludes gestational diabetes

diabetic patients [age 5-17]

Tests for HbA1c

List of LOINC codes

List of SNOMED CT or ICD 10 codes

Data element

Requires date of birth
Anatomy of a Clinical Quality Measure

Population criteria

- **Initial Patient Population**
 - AND: "Patient Characteristic Birthdate: birth date" \geq 5 year(s) starts before start of "Measurement Period"
 - AND: "Patient Characteristic Birthdate: birth date" \leq 17 year(s) starts before start of "Measurement Period"
 - AND: "Diagnosis, Active: Diabetes" starts before or during (MOST RECENT : "Occurrence A of Encounter, Performed: Diabetes Visit" during "Measurement Period")
 - AND: "Encounter, Performed: Diabetes Visit" \geq 12 month(s) starts before start of "Occurrence A of Encounter, Performed: Diabetes Visit"

- **Denominator**
 - AND: "Initial Patient Population"

- **Denominator Exclusions**
 - AND NOT: "Occurrence A of Diagnosis, Active: Gestational Diabetes" ends before start of "Measurement Period"
 - AND: "Occurrence A of Diagnosis, Active: Gestational Diabetes" starts before or during "Measurement Period"

- **Numerator**
 - AND: "[Laboratory Test, Result: HbA1c Laboratory Test (result)]" during "Measurement Period"

- **Denominator Exceptions**
 - None

Data criteria (QDM Data Elements)

- "Diagnosis, Active: Diabetes" using "Diabetes Grouping Value Set (2.16.840.1.113883.3.464.1003.103.12.1001)"
- "Diagnosis, Active: Gestational Diabetes" using "Gestational Diabetes Grouping Value Set (2.16.840.1.113883.3.464.1003.103.12.1010)"
- "Encounter, Performed: Diabetes Visit" using "Diabetes Visit Grouping Value Set (2.16.840.1.113883.3.464.1003.103.12.1012)"
- "[Laboratory Test, Result: HbA1c Laboratory Test]" using "HbA1c Grouping Value Set (2.16.840.1.113883.3.464.1003.198.12.1013)"
- "Patient Characteristic Birthdate: birth date" using "birth date LOINC Value Set (2.16.840.1.113883.3.558.1)"

Value set = List of LOINC codes for HbA1c tests
Associated Value Set
Welcome to the NLM Value Set Authority Center (VSAC)

For VSAC announcements, please subscribe to the VSAC Updates listerv.

The Value Set Authority Center (VSAC) is provided by the National Library of Medicine (NLM), in collaboration with the Office of the National Coordinator for Health Information Technology and the Centers for Medicare & Medicaid Services.

The VSAC provides downloadable access to all official versions of vocabulary value sets contained in the 2014 electronic Clinical Quality Measures (eCQMs). Each value set consists of the numerical values (codes) and human-readable names (terms), drawn from standard vocabularies such as SNOMED CT®, RxNorm, LOINC and ICD-10-CM, which are used to define clinical concepts used in clinical quality measures (e.g., patients with diabetes, clinical visit). For information on the eCQMs, visit the eCQI Resource Center.

The content of the VSAC will gradually expand to incorporate value sets for other use cases, as well as for new measures and updates to existing measures.

Viewing or downloading value sets requires a free Unified Medical Language System® Metathesaurus License, due to usage restrictions on some of the codes included in the value sets.

The Data Element Catalog contains the complete list of 2014 CQMs and value set names.
Clinical Terminology

Summary
Summary

- History of biomedical ontologies
- How clinical features are reflected in disease names
- Structure of the main clinical ontologies used
 - ICD, SNOMED CT, LOINC, RxNorm
- Purpose of biomedical ontologies
 - Knowledge management, [health information exchange and semantic interoperability], and clinical decision support and analytics
Topics not discussed

- Semantic Web, URIs, Linked Data
- Ontology creation, Protege
- Accessing terminology resources (APIs)
- Ontology repositories
 - [UMLS], NCBO BioPortal, EBI Ontology Lookup Service
- NLP, named entity recognition, MetaMap
- Mapping local terms to standard terminologies
- OBO ontologies, OBO Foundry
- Coordinated development of ontologies, harmonization
- Boundary between terminology and information model
- [...]

Lister Hill National Center for Biomedical Communications
Medical Ontology Research

Contact: olivier@nlm.nih.gov
Web: https://mor.nlm.nih.gov

Olivier Bodenreider
Lister Hill National Center for Biomedical Communications
Bethesda, Maryland - USA

U.S. National Library of Medicine