Health-e-Child Final Conference
Sestri Levante, Italy
April 24, 2010

Present and Future of Biomedical Ontologies

Olivier Bodenreider
Lister Hill National Center
for Biomedical Communications
Bethesda, Maryland - USA
Outline

◆ A few legitimate questions
 ● What do you mean by *ontology*?
 ● Why a talk on biomedical ontologies at the Health-e-Child conference?

◆ Biomedical ontologies
 ● (A quick look at) The past
 ● The present
 ● The future

[Bodenreider, Brief Bioinf 2006]
What do you mean by *ontology*?
Ontology vs. other artifacts

- **Ontology**
 - Defining types of things and their relations

- **Terminology**
 - Naming things in a domain

- **Thesaurus**
 - Organizing things for a given purpose

- **Classification**
 - Placing things into (arbitrary) classes

- **Knowledge bases**
 - Assertional vs. definitional knowledge
Ontology vs. other artifacts (revisited)

- **Lexical and terminological resources**
 - Mostly collections of names for biomedical entities
 - Often have some kind or hierarchical organization (e.g., relations)

- **Ontological resources**
 - Mostly collections of relations among biomedical entities
 - Sometimes also collect names

“Ontological spectrum”
Why a talk on biomedical ontologies at the Health-e-Child conference?
Ontology in HeC presentations

◆ Nomenclatures
 ● O. Milenasi
 ◦ International Paediatric and Congenital Cardiac Codes
 ◦ Normalization efforts (in Europe and the EU)
 ◦ Harmonization of the two nomenclatures

◆ Ontologies
 ● A. Tsymbal
 ◦ Gene Ontology, KEGG
 ◦ Reasoning based on ontologies (e.g., semantic similarity)
 ● A. Everett
 ◦ Abstract clinical information from patient records
 ◦ Facilitate the recruitment of patients for clinical trials
HeC and ontology

◆ HeC
 ● Outcomes, diagnoses, procedures
 ● Personalized medicine

◆ Sharing information requires normalization
 ● Among healthcare practitioners
 ● Through clinical research databases
 ◆ Evidence-based medicine
 ◆ Comparative effectiveness

◆ Analyzing information requires aggregation
 ● Compensate for differences in granularity
Genotype vs. phenotype

◆ Genotype information
 ● “Exact” measurement (+ context)
 ● Can be easily analyzed through mathematical models
 ▪ Micro-arrays
 ▪ Sequence similarity
 ▪ SNP patterns

◆ Phenotype information
 ● Results from human observation (+ interpretation / context)
 ● Requires normalization
 ● May require aggregation for analysis
Biomedical ontologies

(A quick look at) The Past
To support a theory of diseases

- **Hippocrates**
 - Dismisses superstition
 - Four humors
 - Blood
 - Phlegm
 - Yellow bile
 - Black bile

- **Thomas Sydenham (1624-1689)**
 - Medical observations on the history and cure of acute diseases (1676)
To classify diseases (and plants)

- Carolus Linnaeus (1707-1778)
 - *Genera Plantarum* (1737)
 - *Genera Morborum* (1763)

- François Boissier de La Croix
 a.k.a. F. B. de Sauvages (1706-1767)
 - *Methodus Foliorum* (1751)
 - *Nosologia Methodica* (1763/68)

- William Cullen (1710-1790)
 - *Synopsis Nosologiae Methodicae* (1785)
To support epidemiology

◆ John Graunt (1620-1674)
 ● Analyzes the vital statistics of the citizens of London

◆ William Farr (1807-1883)
 ● Medical statistician
 ● Improves Cullen’s classification
 ● Contributes to creating ICD

◆ Jacques Berthillon (1851-1922)
 ● Chief of the statistical services (Paris)
 ● Classification of causes of death (161 rubrics)
“The advantages of a uniform statistical nomenclature, however imperfect, are so obvious, that it is surprising no attention has been paid to its enforcement in Bills of Mortality. Each disease has, in many instances, been denoted by three or four terms, and each term has been applied to as many different diseases: vague, inconvenient names have been employed, or complications have been registered instead of primary diseases. The nomenclature is of as much importance in this department of inquiry as weights and measures in the physical sciences, and should be settled without delay.”

– William Farr

First annual report.
Biomedical ontologies

The Present
Many biomedical ontologies

- About 200 biomedical ontologies available in various repositories
- Over 2M biomedical concepts
- Hundreds of millions of relations among them
- Limited interoperability
- Quality assurance issues
Many biomedical ontologies

❖ General vocabularies
 • anatomy (FMA, Neuronames)
 • drugs (RxNorm, First DataBank, Micromedex)
 • medical devices (UMD, SPN)

❖ Several perspectives
 • clinical terms (SNOMED CT)
 • information sciences (MeSH, CRISP)
 • administrative terminologies (ICD-9-CM, CPT-4)
 • data exchange terminologies (HL7, LOINC)
Many biomedical ontologies (cont’d)

◆ Specialized vocabularies
 - nursing (NIC, NOC, NANDA, Omaha, PCDS)
 - dentistry (CDT)
 - oncology (PDQ)
 - psychiatry (DSM, APA)
 - adverse reactions (MedDRA, WHO ART)
 - primary care (ICPC)

◆ Terminology of knowledge bases (OMIM, QMR)
Too many biomedical ontologies?

- Examples of exotic or obsolete ontologies in biomedical ontology repositories
- Governance issues
 - e.g., Ontology developed by a doctoral student
Uses of biomedical ontologies

◆ Knowledge management
 ● Annotating data and resources
 ● Accessing biomedical information
 ● Mapping across biomedical ontologies

◆ Data integration, exchange and semantic interoperability

◆ Decision support
 ● Data selection and aggregation
 ● Decision support
 ● Natural language processing (NLP) applications
 ● Knowledge discovery

[Bodenreider, YBMI 2008]
Development

◆ Still mostly uncoordinated
 ● “Cottage industry”
 ● Issues
 ▪ Redundancy
 ▪ Lack of consistence
 ▪ Need for mapping
 ● Exception: OBO Foundry

◆ Knowledge representation technology
 ● Move towards description logics (e.g., OWL)
 ● e.g., SNOMED CT [+ OBO ontologies]
Loose integration

◆ Pairwise mappings
 ● Unidirectional
 ● Specific to a given purpose
 ● Costly to create and maintain

◆ Integration through a reference
 ● “Interlingua”
 ● Identify which terms from different ontologies name the same entities and link them together
 ● e.g., Unified Medical Language System (UMLS) Metathesaurus
Integrating subdomains

- Clinical repositories
- Genetic knowledge bases
- Other subdomains
- SNOMED CT
- OMIM
- MeSH
- Biomedical literature
- GO
- Genome annotations
- NCBI Taxonomy
- FMA
- Anatomy
- Model organisms
Integrating subdomains

- Clinical repositories
- Genetic knowledge bases
- Biomedical literature
- Genome annotations
- Anatomy
- Model organisms
- Other subdomains

Lister Hill National Center for Biomedical Communications
Ontology integration through the UMLS

Addison's disease (363732003)

Clinical repositories

Genetic knowledge bases

Other subdomains

SNOMED CT

OMIM

NCBI Taxonomy

UMLS C0001403

MeSH

Biomedical literature

Addison Disease (D000224)

Model organisms

Genome annotations

Anatomy

FMA

GO
(Integrated) concept repositories

- Unified Medical Language System

- NCBO’s BioPortal
 http://www.bioontology.org/tools/portal/bioportal.html

- caDSR
 http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr

- Open Biomedical Ontologies (OBO)
 http://obofoundry.org/
Ontology integration supports data integration

http://linkeddata.org
Linked Open Drug Data

http://esw.w3.org/HCLSIG/LODD
Linked data

◆ Semantic Web

◆ Resources available in RDF
 ● Unique, unambiguous identifiers for entities
 ● Explicit relations among entities

◆ Links across resources (federation)
 ● Enabled by
 ■ Shared identifiers across resources
 ■ Global identifiers, resolvable on the web
Biomedical ontologies

The Future
Harmonization

◆ Collaboration among ontology developers

● Prospectively
 • OBO Foundry model
 – Avoid redundancy
 – Foster collaboration

● Retrospectively
 • SNOMED CT model
 – Seek agreement with other ontologies for specialized content (e.g., LOINC for observables)
 – Serve as an ontology backbone for classifications (e.g., ICD11)
Harmonization Benefits

- Fewer pairwise mappings
 - Not needed for concepts of the same level of granularity
 - Computable automatically for finer-grained concepts

- Increased interoperability
 - Among ontologies
 - Among datasets annotated to these ontologies
 - Among applications using these ontologies
Quality of biomedical ontologies

◆ Quality assurance in ontologies is still imperfectly defined
 ● Difficult to define outside a use case or application

◆ Several approaches to evaluating quality
 ● Collaboratively, by users (Web 2.0 approach)
 ▪ Marginal notes enabled by BioPortal
 ● Centrally, by experts
 ▪ OBO Foundry approach

◆ Related issues
 ● Quality of ontology integration (mappings)
Discoverability

◆ No universal repositories for biomedical datasets
 ● Some datasets made available through portals (NCBI, EBI, NCBO)

◆ Ontology repositories
 ● UMLS: 153 source vocabularies
 (biased towards healthcare applications)
 ● NCBO BioPortal: 195 ontologies
 (biased towards biological applications)
 ● Limited overlap between the two repositories

◆ Need for discovery services
 ● Metadata for ontologies and biomedical datasets
Common upper-level ontologies

- **Formalize high-level ontological distinctions**
 - Occurrents/continuants
 - Dependent/independent continuants

- **Can be shared by multiple domain ontologies**

- **Make ontologies easier to integrate**
 - Fewer essential differences in the organization
Reasoning with ontologies

- Description logic (e.g., OWL) reasoners available, but few biomedical ontologies can fully take advantage of them
 - Limited expressiveness of the ontologies
 - Limited performance of the reasoners
- Subsumption reasoning
 - Useful for data aggregation
- Beyond subsumption reasoning
 - Rule-base systems (e.g., for clinical decision support)
 - Hypothesis generation and knowledge discovery
From glycosyltransferase to congenital muscular dystrophy

[Sahoo, Medinfo 2007]