Lexical and Statistical Approaches to Acquiring Ontological Relations

Olivier Bodenreider
Lister Hill National Center for Biomedical Communications
Bethesda, Maryland - USA
Introduction

- Biomedical ontologies
 - Precisely defined (e.g., formal ontology)
 - Limited size
 - Built manually

- Large amounts of knowledge
 - Not represented explicitly by symbolic relations
 - But expressed implicitly
 - By lexico-syntactic relations (i.e., embedded in terms)
 - By statistical relations (e.g., co-occurrence)
 - Can be extracted automatically
Ontology development

- **Formal ontology**
 - Provides a framework for building sound ontologies
 - Too labor-intensive for building large ontologies

- **Otherwise**
 - Usually unsuitable for reasoning
 - Tools for automatic acquisition available
General framework

- Ontology learning
 - [Maedche & Staab, Velardi]
 - ECAI, IJCAI
- Term variation
- Terminology / Knowledge
- Knowledge acquisition/capture
- Information extraction

[Jacquemin]
TKE, TIA
K-CAP
Resources for ontology acquisition

- **Long tradition of terminology building**
 - Over 100 terminologies available in electronic format

- **Large corpora available (e.g., MEDLINE)**
 - Entity recognition tools available
 - E.g., MetaMap (UMLS-based)
 - Several for gene/protein names
 - Information extraction methods

- **Large annotation databases available**
 - MEDLINE citations indexed with MeSH
 - Model organism databases annotated with GO
Methods for ontology acquisition

- **Lexico-syntactic methods**
 - Lexico-syntactic patterns
 - Nominal modification
 - Prepositional phrases
 - Reified relations
 - Semantic interpretation

- **Statistical methods**
 - Clustering
 - Statistical analysis of co-occurrence data
 - Association rule mining
Lexico-syntactic methods
Compositional features of terms

- **Lexical items**
- **Terms within a vocabulary**
 - Clinical vocabularies
 - Gene Ontology
- **Terms across vocabularies**
 - SNOMED / LOINC
 - GO / ChEBI
- **Lexicon / Terms**
 - Semantic lexicon

References:

- [Baud & al., AMIA, 1998]
- [McDonald & al., AMIA, 1999]
- [Ogren & al., PSB, 2004]
- [Mungall, CFG, 2004]
- [Dolin, JAMIA, 1998]
- [Burgun, SMBM, 2005]
- [Johnson, JAMIA, 1999]
- [Verspoor, CFG, 2005]
Statistical methods
Taxonomic relations Clustering

- Source: text corpus
- Principle: similarity between words reflected in their contexts
 - Co-occurring words (+ frequencies)
 - Hierarchical clustering algorithms
 - Similarity measure (cosine, Kullback Leibler)
- Can be refined using classification techniques (e.g., k nearest neighbors)

[Faure & al., LREC, 1998]
[Maedche & al., HoO, 2004]
Associative relations

- **Source:** text corpus / annotation databases
- **Principle:** dependence relations
 - Associations between terms
- **Several methods**
 - Vector space model
 - Co-occurring terms
 - Association rule mining
- **Limitations:** no semantics

[Bodenreider & al., PSB, 2005]
1. Similarity in the vector space model

GO terms

<table>
<thead>
<tr>
<th></th>
<th>t₁</th>
<th>t₂</th>
<th>...</th>
<th>tₙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>g₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gₙ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Genes

<table>
<thead>
<tr>
<th></th>
<th>g₁</th>
<th>g₂</th>
<th>...</th>
<th>gₙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tₙ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Annotation database
1. **Similarity in the vector space model**

- **GO terms**
 - t_1, t_2, ..., t_n

- **Genes**
 - g_1, g_2, ..., g_n

- **Similarity matrix**
 - $\text{Sim}(t_i, t_j) = \vec{t}_i \cdot \vec{t}_j$

GO terms

<table>
<thead>
<tr>
<th></th>
<th>t_1</th>
<th>t_2</th>
<th>...</th>
<th>t_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis of co-occurring GO terms

GO terms

<table>
<thead>
<tr>
<th>Genes</th>
<th>g_1</th>
<th>g_2</th>
<th>...</th>
<th>g_n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t_1</td>
<td>t_2</td>
<td>...</td>
<td>t_n</td>
</tr>
</tbody>
</table>

Annotation database

t_2-t_7	1
t_2-t_9	1
t_7-t_9	2
...	
Analysis of co-occurring GO terms

- Statistical analysis: test independence
 - Likelihood ratio test (G^2)
 - Chi-square test (Pearson’s χ^2)

- Example from GOA (22,720 annotations)

```markdown
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GO:0008009 [MF]</td>
<td>C0008009 [MF]</td>
<td>Freq. = 53</td>
</tr>
</tbody>
</table>
```

Co-oc. = 46

<table>
<thead>
<tr>
<th>GO:0008009</th>
<th>immune response</th>
</tr>
</thead>
<tbody>
<tr>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>present</td>
<td>46</td>
</tr>
<tr>
<td>absent</td>
<td>7</td>
</tr>
<tr>
<td>total</td>
<td>53</td>
</tr>
</tbody>
</table>

$G^2 = 298.7$

p < 0.000
Association rule mining

GO terms

<table>
<thead>
<tr>
<th>Genes</th>
<th>t₁</th>
<th>t₂</th>
<th>...</th>
<th>tₙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>g₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gₙ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

annotation database

.transaction

g₂

t₁ \Rightarrow t₂

Rules: t₁ \Rightarrow t₂
Confidence: > .9
Support: .05
Example of associations (GO)

- **Vector space model**
 - MF: *ice binding*
 - BP: *response to freezing*

- **Co-occurring terms**
 - MF: *chromatin binding*
 - CC: *nuclear chromatin*

- **Association rule mining**
 - MF: *carboxypeptidase A activity*
 - BP: *peptolysis and peptidolysis*
Discussion and Conclusions
Reusing thesauri

- First approximation for taxonomic relations
 - No need for creating taxonomies from scratch in biomedicine

- Beware of purpose-dependent relations
 - *Addison’s disease* isa Autoimmune disorder

- Relations used to create hierarchies
 vs. hierarchical relations

- Requires (some) manual curation

[Wroe & al., PSB, 2003]
[Hahn & al., PSB, 2003]
Combine methods

◆ Affordable relations
 ● Computer-intensive, not labor-intensive

◆ Methods must be combined
 ● Cross-validation
 ● Redundancy as a surrogate for reliability
 ● Relations identified specifically by one approach
 ▪ False positives
 ▪ Specific strength of a particular method

◆ Requires (some) manual curation
 ● Biologists must be involved
Medical Ontology Research

Contact: olivier@nlm.nih.gov
Web: mor.nlm.nih.gov

Olivier Bodenreider
Lister Hill National Center for Biomedical Communications
Bethesda, Maryland - USA