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ABSTRACT
Objective: Use heuristic, deep learning (DL), and hybrid AI methods to predict semantic group (SG) assignments for new UMLS Metathesaurus
atoms, with target accuracy �95%.

Materials and Methods: We used train-test datasets from successive 2020AA–2022AB UMLS Metathesaurus releases. Our heuristic
“waterfall” approach employed a sequence of 7 different SG prediction methods. Atoms not qualifying for a method were passed on to the next
method. The DL approach generated BioWordVec and SapBERT embeddings for atom names, BioWordVec embeddings for source vocabulary
names, and BioWordVec embeddings for atom names of the second-to-top nodes of an atom’s source hierarchy. We fed a concatenation of the
4 embeddings into a fully connected multilayer neural network with an output layer of 15 nodes (one for each SG). For both approaches, we
developed methods to estimate the probability that their predicted SG for an atom would be correct. Based on these estimations, we developed
2 hybrid SG prediction methods combining the strengths of heuristic and DL methods.

Results: The heuristic waterfall approach accurately predicted 94.3% of SGs for 1 563692 new unseen atoms. The DL accuracy on the same
dataset was also 94.3%. The hybrid approaches achieved an average accuracy of 96.5%.

Conclusion: Our study demonstrated that AI methods can predict SG assignments for new UMLS atoms with sufficient accuracy to be poten-
tially useful as an intermediate step in the time-consuming task of assigning new atoms to UMLS concepts. We showed that for SG prediction,
combining heuristic methods and DL methods can produce better results than either alone.
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BACKGROUND AND SIGNIFICANCE

Professional societies, government institutions, and other
organizations have separately maintained terms within 222
sources and contributed them to the UMLS Metathesaurus.1

The Metathesaurus is the largest component of the UMLS.
The UMLS facilitates interpretation of biomedical meanings
across disparate electronic information and data sources in
systems serving scientists, health professionals, and the pub-
lic.2 Every 6 months, UMLS editors at NLM complete the
arduous task of incorporating several hundred thousand new
atoms (source-specific text strings) into the Metathesaurus. A
critical part of that activity involves consolidating like-
meaning atoms into UMLS concepts, each assigned a perma-
nent concept unique identifier (CUI). The 2022AB UMLS
Metathesaurus embodies 16 857 345 atoms—each assigned
an atom unique identifier (AUI), and grouped into 4 553 796
unique concepts.

The biannual updating task requires substantial human
time and expertise. Deciding which, if any, of 4 million con-
cepts a new atom matches is a daunting task that carries a
risk of misclassification. As the number of unique UMLS con-
cepts grows, both the level of effort required to classify new

atoms and the possibility of misclassifications will presumably
increase. Automated assistance with assigning new atoms to
UMLS concepts could alleviate some of the burden on UMLS
editors and reduce the risk of errors.

Previous NLM work showed that deep learning (DL) meth-
ods could predict synonymy between pairs of atoms.3 Our
group also found that the addition of semantic information
about each atom could improve DL prediction accuracy.4

Our previous work used SGs as the indicator of the semantics
of an atom. However, the SG is only known after an atom is
incorporated into the UMLS (ie, when UMLS editors assign
semantic types to UMLS concepts). Each new UMLS concept
is assigned to at least 1 of 127 semantic types that categorize
the functional meaning/usage of a concept, for example,
“disease or syndrome,” “gene or genome,” “laboratory
procedure.”5 Once a semantic type is assigned, it can be rolled
up to 1 of 15 sematic groups (SGs).6 For example, the SG
“DISO” encompasses disorder, cellular dysfunction, sign, or
symptom etc. The SG “GENE” encompasses semantic types
gene, molecular sequence, amino acid sequence, and others. If
SGs are to be useful in assigning new atoms to UMLS con-
cepts, a new atom’s SG must be predicted with high accuracy.
This was the motivation of this study.
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The current study compares 2 artificial intelligence (AI)
computational approaches to predict the SG for new atoms:
heuristic reasoning and DL. Heuristic reasoning refers to the
use of programs or algorithms that “gain their power from
qualitative, experiential judgments, codified in so-called rules
of thumb or heuristics, in contrast to numerical calculation
programs whose power derives from the analytical equations
used. The heuristics focus the attention of the reasoning pro-
gram on the parts of the problem that seem most relevant.
They also guide the application of the domain knowledge.”7

Due to their ability to learn high-level representations from
raw text data, DL methods have gained increasing utilization
in text analysis and classification tasks. Large language mod-
els pretrained on large corpora of biomedical texts have
become the work horse of many biomedical natural language
processing (NLP) research efforts. BioWordVec, which was
trained on PubMed articles, MeSH terms, and clinical notes,
has been shown to outperform other general-purpose word
embedding models for various NLP tasks.8 The recent success
of the self-attention mechanism has led to a flurry of
transformer-based language models such as BERT,9 GPT,10

and Chinchilla.11 Of particular relevance to our study is Sap-
BERT trained with the transformer architecture, augmented
by PubMed articles and UMLS synonyms.12

The specific contributions of this study have been:

1) Demonstration that AI methods can predict SG assign-
ments for new UMLS atoms with sufficient potential
accuracy to be useful in the larger task of assigning new
atoms to CUIs.

2) Demonstration that for SG prediction, heuristic meth-
ods, and DL methods can be combined to produce bet-
ter results than either approach alone.

MATERIALS AND METHODS
Overview of methods

Our goal has been to eventually assist UMLS editors algorith-
mically when they are identifying CUIs for new atoms. We
recognized that any future CUI prediction algorithm would
itself be imperfect. For SG prediction to serve as a useful inter-
mediate step in that context, we set a target accuracy of at
least 95% for SG prediction. Because extreme accuracy was
critical, we designed the current study’s heuristic and DL algo-
rithms to be “self-aware”—that is, able to estimate accuracy
for each SG prediction they made. This ability also enabled us
to determine when a hybrid algorithm combining both
approaches might outperform either one alone. Specifically, if
one AI method could assign an atom’s SG with greater pre-
dicted accuracy than the other algorithm, the hybrid system
could use the better of the 2.

Figure 1 gives an overview of our methods. Both AI meth-
ods used data from prior UMLS releases to derive information
useful for predicting the SG of a new atom. The content of
UMLS updates has been known to vary in important ways
(eg, which sources contributed what numbers of new atoms/
concepts, the distribution of semantic types of new atoms, the
number of new atoms with novel names). To lessen concerns
about idiosyncratic release-to-release variability, our analysis
covered 6 consecutive UMLS releases: 2020AA, 2020AB,
2021AA, 2021AB, 2022AA, and 2022AB. The project
restricted UMLS contents under review to the current 184

English language sources. We further excluded 25 inactive
English language sources (ie, those designated by NLM as not
updated in recent years). Finally, to avoid unwanted ambigu-
ities and redundancies, the study excluded atoms that the
UMLS editors had deemed suppressible. Suppressible terms
have uncertain meanings or lack face validity. For example,
the term “pancreas” in a hierarchical list of primary cancers
in a source vocabulary would be suppressible since the term
refers to pancreatic cancer instead of the anatomical entity.
For each AI method, a new model was trained on one base
UMLS release version and tested on the new atoms added to
the UMLS in the immediate next release (eg, train on
2020AA, test using 2020AB). Altogether, the study analyzed
5 train-test UMLS release pairs.

Both AI methods utilized training and test data extracted
from UMLS release files MRCONSO (access to CUI, SCUI,
AUI, atom name, and source vocabulary), MRSTY (semantic
types enabling derivation of SGs), and MRHIER (source hier-
archy).13 Extracted information used by one or both methods
included:

• source vocabulary
• name (spelling) of atom
• SG assigned in training dataset—for the small number

(<0.1%) of atoms with multiple SGs, one SG was chosen
at random; SG from test dataset only used to verify
predictions

• hierarchical context of atom in source vocabulary—in
sources that had a hierarchical structure, we used the sec-
ond top node as a proxy for the atom’s hierarchical con-
text. This is because the top node is often the source
vocabulary and not useful. For example, for the atom
“Myocardial infarction (disorder)” from SNOMED CT,
the second top node is “Clinical finding (finding),” and
the top node is “SNOMED CT concept.”

• Source asserted synonymy—some source vocabularies
assert synonymy between its atoms by assigning a source
concept unique identifier (SCUI). UMLS editors generally
honor source synonymy and do not split source-
synonymous atoms into different CUIs.

We tracked the amount of effort (human and computer)
utilized in developing and deploying each AI approach.

Heuristic approach

Our heuristic approach was structured as a “waterfall” of dif-
ferent customized methods (steps) to classify each new atom.
If one of the methods (STEP 1–STEP 5) below could not
assign a new atom’s SG with at least 95% confidence (based
on statistics derived from the training release—eg, the fre-
quency with which a given UMLS training release source was
associated with training release terms categorized by a specific
SG), that atom was passed on to the next method. When an
atom met eligibility criteria for a given step, that step-
predicted SG was assigned to the atom. The atom was not
processed in subsequent steps. We determined the sequence of
steps to be employed in the waterfall by first using each water-
fall prediction method (independently of the others) on all
training data. The waterfall steps were then arranged in
descending order of each step’s previously established SG pre-
diction accuracy.

Using the following methods, the heuristic algorithms could
estimate (statistically, as noted above) whether the SG
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prediction of an atom was likely to meet or exceed the target
95% accuracy threshold:

STEP 1 (HiPPv SRCs—high positive predictive value sour-
ces): Use the frequency that an atom’s source in the previous
UMLS release matched a specific SG. For example, 99% of
atoms from sources RXNORM and USP mapped to SG
CHEM, and 98% of atoms from source CPT matched SG
PROC.

STEP 2 (HiPPv SCUIs—high positive predictive value
SCUIs): Use a combination of an atom’s source and its SCUI
to predict SGs based on how often the combination did so in
the training dataset (only useful if a source provided SCUIs).

STEP 3 (Matched Atom Names): Use the frequency that a
new (test) atom name exactly matched a training set atom
name; if �95%, use the SG of the matched atom. Approxi-
mately 15% of new atoms from the subsequent UMLS release
had identical names with atoms in the previous release. Often,
independent UMLS sources selected the same wordings to
describe the same phenomena.

STEP 4 (HiPPv Trigrams—high positive predictive value
trigrams): Derive from an atom’s name its individual words
(ASCII strings separated by spaces), bigrams (pairs of adjacent
words with preserved word order), and trigrams (triplets with
preserved order). Determine how often each would match
individual SGs. In STEP 4, predict SGs for any new atom con-
taining a trigram when the training trigram-SG association
frequency was at least 95%. For example, trigram “acute
transverse myelitis” occurred 14 times in atom names from
UMLS 2020AA; 100% of those atoms belonged to SG
“DISO.”

STEP 5 (SRC-Parens rules—source parenthesis rules):
Derive rules based on the idiosyncratic nuances that each
source used to construct atom names. We predicted the

likelihood of an SG match based on whether a rule was satis-
fied. Many UMLS sources embedded unique-for-that-source
parenthetical expressions within their atom names. For exam-
ple, in previous UMLS releases, when a SNOMEDCT_US
atom name contained “(dose form)” then its SG was always
CHEM.

As noted, each of the above methods could be configured
to predict a new atom’s SG with �95% certainty based on
information derived from the training dataset. For atoms not
classified by STEP 1–STEP 5, we used less accurate ad hoc
algorithms. Atoms became eligible for STEP 6 if they con-
tained 3 or more words. The STEP 6 (SRCs, Trigrams,
Words) algorithm first identified all trigrams that could be
derived from an atom’s name and added each trigram’s pre-
dictive accuracy for each specific SG (as a percentage) to a
running total. To candidate SG running totals, STEP 6 also
added the percentage association of an atom’s source with the
SG. If one SG then had the highest score, STEP 6 assigned the
SG to the atom. Otherwise, STEP 6 repeated the same proce-
dure but scored an atom’s words instead of its trigrams. If no
SG had a top score, the atom was passed on to the last water-
fall step. STEP 7 (SRCs, Bigrams, Words) was similar to STEP
6, but the atoms it processed were composed of only 1 or 2
words. Parallel to STEP 6, STEP 7 used bigrams and individ-
ual words to predict SG candidates. For remaining atoms for
which STEP 7 had not yet selected an SG, STEP 7 arbitrarily
assigned the SG “DISO.” Previous analysis had indicated that
for the most common UMLS SGs, LIVB, and CHEM, STEPS
1–6 could select SGs reasonably well based on their unique
characteristics (especially sources and atom spellings); this
was less so the case for new atoms corresponding to disease
names and finding names whose SG would be DISO.

Figure 1. Overview of the heuristic approach and deep learning approach.
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Deep learning approach

To feed text data into our DL models, we converted it into
numerical vectors. We chose BioWordVec8 and SapBERT12

as language models based on their performance during earlier
testing.14 We generated BioWordVec and SapBERT embed-
dings for atom strings (200 and 768 dimensions, respectively),
a BioWordVec embedding for the name of the source vocabu-
lary (200 dimensions), and a BioWordVec embedding for the
string of the second top atom of the source hierarchy (200
dimensions). The reason for using both SapBERT and Bio-
WordVec embeddings of the atom string was that we noticed
an increase in performance of up to 5% compared to using
either embedding alone, presumably because SapBERT addi-
tionally incorporated information in UMLS synonymy. If the
second top atom was not available (eg, source with no hier-
archy), we used an all-zero vector. We concatenated the 4
embeddings and fed the result into a fully connected multi-
layer neural network. The output layer had 15 nodes, one for
each SG. We split the data from the base UMLS version into
training and validation sets (80% and 20%, respectively). We
used the validation set to fine-tune the hyperparameters of the
neural network.

To develop a method to estimate the probability that a pre-
diction would be correct, we hypothesized that the difference
(delta) between the DL’s score for the top SG and second-to-
top predicted SG for an atom would be correlated with the
accuracy of the DL’s prediction. Intuitively, we expected that
a higher delta would be associated with a higher probability
of a correct prediction. Since DL scores varied between 0 and
100, we separated the delta into intervals of 1 and computed
the accuracy for the atoms in each delta interval for each data-
set. We used the microaverage across the 5 datasets as an indi-
cator of the overall expected accuracy for each delta interval.

Hybrid approach

Assuming that our DL and heuristic methods were comple-
mentary orthogonal approaches, combining them could

theoretically yield better results. Since we have developed
methods for each approach to estimate its expected accuracy
for SG predictions, we explored 2 methods of combining
them into a hybrid model. The “step-level hybrid method”
started with STEP 1 of the heuristic method, following each
step until the estimated accuracy of the next step was expected
to be lower than the DL method, and then switched to DL to
process the rest of the atoms. The “atom-level hybrid meth-
od” generated SG predictions for all atoms by both the heuris-
tic and DL methods. The results were then combined. When
the predictions for a specific atom did not concur, the predic-
tion from the method that had the higher expected accuracy
was used. Figure 2 gives an overview of the 2 hybrid methods.

We used the McNemar test15 to evaluate statistically the
differences in performance.

RESULTS
Heuristic approach

Table 1 shows step-by-step results for the heuristic 7-step
waterfall SG prediction method. Table 1 provides overall
totals as well as individual results for each of the 5 train-test
UMLS release pairs. The aggregate of all STEPs in the water-
fall approach correctly assigned SGs to 1 475 160 (94.3%) of
the 1 563 692 AUIs processed for the 5 UMLS release pairs.
By contrast, for STEP 1–STEP 5 inclusive, the heuristic SG
prediction accuracy was 98.8% for 1 321 353 AUIs (85% of
all test AUIs in the study). Per Table 1, only in STEP 6 and
STEP 7 did the waterfall predictive accuracies fall (to 71%
and 65%, respectively).

Deep learning approach

In the DL validation phase, we determined that best perform-
ance was achieved with the following: one hidden layer of
2048 neurons, one dropout layer (rate¼ 0.2), one batch nor-
malization layer, the rectified linear unit (ReLU) activation
function for the hidden layers, the cross-entropy loss function

Figure 2. Overview of the step-level and atom-level hybrid methods.
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for computing the loss between the predicted output of the
neural network and the true labels of the data, learning rate
of 0.00002, and epochs number of 100.

The accuracy of the DL approach in each of the 5 datasets
varied from 91.6% to 97.1% (first row, Table 2). The overall
microaveraged accuracy across the 5 datasets was 94.3%.
Table 2 also shows the accuracy corresponding to each best-
to-second-best score delta range. Note that the number of
atoms in each range varied in different datasets. The total
accuracy for a particular dataset can be interpreted as a
weighted average across all ranges. In line with our expecta-
tion, the accuracy increased monotonically with delta. Aver-
age accuracy of over 95% was achieved with delta of �8.
Delta scores �8 pertained to 78.1% of all AUIs across the 5
datasets.

Hybrid approach

Table 3 compares the results of the heuristic and DL
approaches. Overall, they agreed for 92.5% of all AUIs proc-
essed across the 5 datasets (both correct or both incorrect).
The proportion in which one approach was correct while the
other was incorrect was: heuristic correct 3.8%, DL correct
3.7%. A small set of examples in each category is available in
Supplementary Table S1. The first 5 steps of the heuristic
approach outperformed DL (98.8% accuracy vs 94.3%).
Therefore, in the step-level hybrid method, we replaced STEP
6 (71% accuracy) and STEP 7 (65% accuracy) of the heuristic
approach with DL.

Table 4 shows the performance of the heuristic, DL, and
the 2 hybrid methods. The atom-level hybrid method achieved
the overall best SG prediction accuracy of 96.6%, followed
by the step-level hybrid of 96.4%. The full set of results
including the gold standard and each method’s predictions is

available as Supplementary Material16 (https://doi.org/doi:10.
5061/dryad.dfn2z356z). The pairwise differences between the
individual approaches and the hybrid methods were all statis-
tically significant (see Supplementary Table S2 for full statisti-
cal results).

Development and run-time data for each approach

Development (design, coding, testing, iterative evolution) of
the heuristic approach consumed 2.5 person-months of effort
by author (RAM). The computational environment used for
the heuristic approach was a virtual Linux machine with 16
CPUs and 24 GB of RAM. To run the heuristic algorithms to
produce the results described herein required 4 h for data
transformation (from raw UMLS distribution files MRCON,
MRSTY, and MRHIER), and 1 h to execute all of the 7 steps
of the waterfall approach for all 5 datasets.

The DL approach was developed over 3 months by 2
authors (YM and KWF). We utilized the Biowulf high per-
formance computing cluster at the National Institutes of
Health.17 Slurm workload manager was used to submit and
parallelize the training, evaluation, and testing jobs.18 The
average total time for training a DL model was 6.5 days on a
v100x GPU with 32GB of RAM and 300GB of CPU RAM.
Each dataset took 4 h to prepare the embeddings and 15 min
for testing on an average.

DISCUSSION
Accomplishments of this study

The motivation for this study was to create a SG predictor
with high enough accuracy to assist in UMLS editing, ie, to
group synonymous new atoms into UMLS concepts. In pre-
dicting the SG for new atoms, both the heuristic and DL

Table 1. Heuristic semantic group predictions by waterfall step and UMLS dataset release

UMLS release: train 2022AA 2021AB 2021AA 2020AB 2020AA OVERALL

UMLS release: test 2022AB 2022AA 2021AB 2021AA 2020AB

Number of new AUIs in test releases 275 844 175 990 455 510 226 211 430 137 1 563 692
STEP 1: HiPPv SRCs
AUIs processed (% of original) 140 014 51% 4763 3% 133 684 29% 26 710 12% 290 962 68% 596 133 38%
AUIs correct (% of processed) 139 490 99.6% 4621 97% 133 368 99.8% 26 242 98% 289 877 99.6% 593 598 99.6%
STEP 2: HiPPv SCUIs
AUIs processed (% of original) 30 443 11% 36 896 21% 213 319 47% 28 398 13% 24 842 6% 333 898 21%
AUIs correct (% of processed) 30 346 99.7% 36 731 99.6% 212 659 99.7% 28 283 99.6% 24 673 99.3% 332 692 99.6%
STEP 3: matched spellings
AUIs processed (% of original) 19 201 7% 59 935 34% 36 190 8% 95 521 42% 19 086 4% 229 933 15%
AUIs correct (% of processed) 18 633 97% 58 952 98% 35 151 97% 94 909 99% 18 243 96% 225 888 98%
STEP 4: HiPPv trigrams
AUIs processed (% of original) 23 929 9% 16 950 10% 22 446 5% 28 833 13% 36 258 8% 128 416 8%
AUIs correct (% of processed) 23 111 97% 16 379 97% 20 732 92% 27 833 97% 34 344 95% 122 399 95%
STEP 5: SRC-Parens rules
AUIs processed (% of original) 7182 3% 6403 4% 6941 2% 5684 3% 6763 2% 32 973 2%
AUIs correct (% of processed) 6667 93% 6110 95% 6531 94% 5464 96% 6413 95% 31 185 95%
STEP 6: SRCs, trigrams, words
AUIs processed (% of original) 44 712 16% 41 802 24% 32 969 7% 28 475 13% 38 971 9% 186 929 12%
AUIs correct (% of processed) 34 753 78% 29 094 70% 22 843 69% 20 053 70% 26 815 69% 133 558 71%
STEP 7: SRCs, bigrams, words
AUIs processed (% of original) 10 363 4% 9241 5% 9961 2% 12 590 6% 13 255 3% 55 410 4%
AUIs correct (% of processed) 7130 69% 5648 61% 6092 61% 8523 68% 8447 64% 35 840 65%
TOTALs: STEP 1–STEP 7
AUIs processed (% of original) 275 844 100% 175 990 100% 455 510 100% 226 211 100% 430 137 100% 1 563 692 100%
AUIs correct (% of processed) 260 130 94% 157 535 90% 437 376 96% 211 307 93% 408 812 95% 1 475 160 94.3%

HiPPv: high predictive value; SRC: UMLS source vocabulary; SCUI: Source vocabulary CUI; Parens: parenthesis-related.
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approaches in this study achieved nearly identical overall
accuracies (94.3%) across all datasets. The 2 hybrid
approaches gained about 2% in accuracy, with the atom-
based hybrid method slightly outperforming the step-based
method. Our original design goal of at least 95% accuracy
was satisfied.

Relevant prior work

An earlier study by Fan et al19 used distributional similarity
of UMLS concepts in a corpus of PubMed citations to classify
them into 7 semantic classes. The error rate was 19.8% for
the top prediction. A subsequent refinement added lexical fea-
tures which reduced the error rate to 14.3%.20 Compared
with Fan et al, our DL approach did not need an external cor-
pus, nor the hand-crafted rules to extract contextual informa-
tion from text. Some elements of our heuristic approach
resembled their lexical methods, but we also used bigrams
and trigrams in addition to single words. Furthermore, our
approaches leveraged information derived from the source
vocabulary, including source name, source synonymy, and
source hierarchy. Overall, our approaches had an error rate
of 4% (10% lower than their best results). A more recent
study by Kudama and Llavori21 employed conditional ran-
dom fields to predict the SG of the head word in a UMLS
atom. The highest overall precision they achieved was 80%.

Contrasting the 2 AI approaches in this study

The study’s 2 approaches can both be classified as AI techni-
ques. The heuristic approach was derived through applying
expert knowledge and analysis of existing UMLS data that
led to symbolic reasoning algorithms. The DL approach was
less dependent on human knowledge and analysis and relied
more on machine learning using large volumes of training
data. Each approach has its strength and limitations. The heu-
ristic approach relies on manual derivation of highly specific
algorithms that could have limited generalizability to other
tasks. However, the advantages of the heuristic approach are
its flexibility, short processing time, and superior accuracy in
waterfall steps 1–5. Due to the modular nature of the steps,
each one could be modified individually as required. It would
be relatively simple to add new steps, or to reorder existing
steps. On the other hand, the DL approach is a monolithic
black box. Any modification will need retraining of the whole
model, which may take multiple days and more intensive uti-
lization of computing resources. The strength of the DL
approach is minimal human intervention, which provides
higher consistency and reproducibility.

Application of SG prediction in UMLS editing

This study created a highly accurate SG predictor with the
goal of eventually assisting UMLS editors in assigning new

Table 2. Performance of deep learning approach and accuracy by top score delta range

Accuracy

Proportion

of AUIs

Top score

delta rangea
2020AA–

2020AB

2020AB–

2021AA

2021AA–

2021AB

2021AB–

2022AA

2022AA–

2022AB Microaverage

Overall 97.1% 93.2% 94.5% 91.6% 92.7% 94.3% 100%
[0, 2) 52.5% 58.9% 52.4% 50.9% 52.2% 53.5% 4.8%
[2, 4) 73.1% 79.5% 71.8% 68.1% 64.5% 72.3% 4.9%
[4, 6) 87.3% 90.4% 85.6% 81.2% 75.6% 84.9% 5.5%
[6, 8) 95.0% 94.9% 93.5% 90.2% 83.9% 92.5% 6.7%
[8, 10) 98.0% 96.8% 96.6% 94.9% 90.1% 96.6% 7.9%
[10, 12) 99.2% 97.7% 98.3% 97.2% 93.8% 97.9% 9.3%
[12, 14) 99.6% 98.4% 99.3% 98.6% 96.4% 98.9% 10.1%
[14, 16) 99.7% 98.9% 99.6% 99.2% 97.9% 99.3% 10.5%
[16, 100] 99.9% 99.5% 99.5% 99.6% 99.5% 99.7% 40.3%

a Difference of model output score for top 2 SG predictions.

Table 3. Contingency table for the performance of the 2 approaches

2020AA–

2020AB

2020AB–

2021AA

2021AA–

2021AB

2021AB–

2022AA

2022AA–

2022AB Overall

Both approaches are correct 402 503 (93.6%) 199 520 (88.2%) 418 887 (92.0%) 149 218 (84.8%) 245 713 (89.1%) 1 415 841 (90.5%)
Both approaches are incorrect 6162 (1.4%) 5003 (2.2%) 6675 (1.5%) 6407 (3.6%) 5648 (2.1%) 29 895 (1.9%)
HE is correct and DL is incorrect 6280 (1.5%) 11 906 (5.3%) 18 494 (4.1%) 8349 (6.83%) 14 421 (5.2%) 59 450 (3.8%)
DL is correct and HE is incorrect 15 192 (3.5%) 9782 (4.3%) 11 454 (2.5%) 12 016 (4.7%) 10 062 (3.7%) 58 506 (3.7%)

HE: heuristic approach; DL: deep learning approach.

Table 4. Comparison of the performance of heuristic, DL, and the 2 hybrid methods

2020AA–2020AB 2020AB–2021AA 2021AA–2021AB 2021AB–2022AA 2022AA–2022AB Microaverage

Heuristic 95.0% 93.4% 96.0% 89.5% 94.3% 94.3%
Deep learning 97.1% 93.2% 94.5% 91.6% 92.7% 94.3%
Step-level hybrid 97.3% 96.2% 97.6% 94.1% 94.5% 96.4%
Atom-level hybrid 97.5% 96.3% 97.6% 93.9% 95.2% 96.6%
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atoms to UMLS concepts. Currently, the UMLS editing plat-
form depends primarily on normalized string matching and
source synonymy to suggest to UMLS editors possible group-
ing of new atoms into existing concepts. A logical extension
of this work will be to create a DL-based tool that suggests to
which existing concepts a new atom belongs (or that it does
not match anything and should form a new concept), which
can potentially augment or replace the current workflow. We
observed considerable variability in the 5 datasets in our
study in terms of the performance of our methods. Therefore,
the methods should be regularly revisited to ensure that their
performance does not degrade over time. Performance might
improve following additional insights gained from applying
the methods to more datasets, and the availability of newer
techniques.

A second potential application of our methods is in the
quality assurance of existing semantic type assignment in the
UMLS. Previous studies have proposed methods to identify
errors in semantic type assignments.22 Several of those meth-
ods focused on concepts assigned to multiple semantic types
or SGs, which are more likely to contain errors or problems
of internal consistency.23–29 Those methods have limited gen-
eralizability because only 10% of UMLS concepts have multi-
ple semantic type or SG assignments. The auditing method
proposed by He et al30 was restricted to top level semantic
types. Another method by Gu et al31 relied on semantic tags
which were only available from SNOMED CT terms. In con-
trast, our approaches can be used to predict the SG of every
atom. Another advantage of our method is that we have a
built-in metric for the expected accuracy of each prediction.
Potential errors detected by any method need to be reviewed
by UMLS editors, who can become overwhelmed with false
positives if the positive predictive value of the method is not
high enough. Using our method, we would recommend that
the editors only review potential errors associated with a very
high expected accuracy (eg, >98%) to reduce the false posi-
tive rate.

Limitations and future work

The hybrid approaches relied on an estimation of the
expected accuracy of the prediction by the 2 approaches for
each atom. When applying the method to a particular dataset,
the expected accuracy could be calculated based on the actual
performance of the methods on past datasets. For example,
when applying the methods to the 2021AA–2021AB dataset,
the expected accuracy should be calculated based on the
actual performance of the methods on the 2020AA–2020AB
and 2020AB–2021AA datasets. Nevertheless, to simplify the
experimental design, we used the microaveraged actual per-
formance of all datasets to derive a single expected accuracy
for all datasets, and applied that to evaluate the performance
of the hybrid methods over individual datasets. We acknowl-
edge this limitation. However, our analyses across the 5 data-
sets have led us to believe that the results reported herein are
nevertheless largely valid. Another limitation of our study is
that, based on the observed variability between UMLS
releases, whether our results are generalizable to future
releases remains to be seen. That the evaluation model used in
this study used training data from the immediately previous
UMLS release somewhat mitigates against this concern.
Finally, the parentheses-related rules used in STEP 5 of the
heuristic method were manually derived by author RAM
through direct observations of patterns in the data. That

approach may not be fully reproducible for future
applications.

We are currently in the final stages of developing and test-
ing an automated approach to derive STEP 5 of the heuristic
approach and preliminary results show that the performance
is comparable to the hand-crafted rule. We are also experi-
menting to adapt our SG prediction methods to help with the
algorithmic assignment of semantic types in the UMLS editing
process, and potentially as an auditing tool for assigned
semantic types in the UMLS.

In the future, it may be worthwhile to look at newer ver-
sions of DL models and techniques, which are evolving rap-
idly. As a start, the SapBERT model used in this study, which
is based on the 2020AA UMLS, may benefit from retraining
using a newer release. Newer and more powerful language
models, such as ChatGPT32 and GPT-4,33 may offer addi-
tional benefits.

CONCLUSION

Our study demonstrated that AI methods can predict SG
assignments for new UMLS atoms with sufficient accuracy to
be potentially useful as an intermediate step in the time-
consuming task of assigning new atoms to UMLS concepts
(CUIs). We showed that for SG prediction, combining heuris-
tic methods and DL methods can produce better results than
either alone.
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