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Abstract 

The representation of medical data and knowledge is fundamental in the field of 

medical informatics. Ontologies and related artifacts are important tools in 

knowledge representation, yet they are often given little attention and taken for 

granted. In this chapter, we give an overview of the development of medical 

ontologies, including available ontology repositories and tools. We highlight some 

ontologies that are particularly relevant to clinical research and describe with 

examples the benefits of using ontologies to facilitate research workflow 

management, data integration and electronic phenotyping. 

 

Keywords 

Knowledge representation, Biomedical ontologies, Research metadata ontology, 

Data content ontology, Ontology-driven knowledge bases, Data integration, 

Electronic phenotyping 

 

Learning Objectives 

1) Define the term ontology, list and briefly describe at least 4 ontologies relevant 

to clinical research, and discuss how these ontologies can support the design and 

conduct of biomedical research. 

2) Articulate the differences between types and instances of entities in an 

ontology. 

3) Discuss the relationship between top-level ontologies and domain specific 

ontologies. 

4) Define harmonization in the context of ontologies and describe the approach 

and benefits of the Open Biomedical Ontologies (OBO) Foundry for ontology 

harmonization.  

5) Describe the design features and role of integrated ontology repositories, such 

as the UMLS and BioPortal, in the use and alignment of different ontologies. 
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Ontologies have become important tools in biomedicine, supporting critical 

aspects of both health care and biomedical research, including clinical research 

[1]. Some even see ontologies as integral to science [2]. Unlike terminologies 

(focusing on naming) and classification systems (developed for partitioning a 

domain), ontologies define the types of entities that exist, as well as their 

interrelations. And while knowledge bases generally integrate both definitional 

and assertional knowledge, ontologies focus on what is always true of entities, 

i.e., definitional knowledge [3]. In practice, however, there is no sharp distinction 

between these kinds of artifacts and ‘ontology’ has become a generic name for a 

variety of knowledge sources with important differences in their degree of 

formality, coverage, richness and computability [4].  

Ontology development 
Ontology development has not yet been formalized to the same extent as, say, 

database development has, and there is still no equivalent for ontologies to the 

entity-relationship model. However, ontology development is guided by 

fundamental ontological distinctions and supported by the formalisms and tools 

for knowledge representation that have emerged over the past decades. Several 

top-level ontologies provide useful constraints for the development of domain 

ontologies and one of the most recent trends is increased collaboration among the 

creators of ontologies for coordinated development. 

Important ontological distinctions 

A small number of ontological distinctions inherited from philosophical ontology 

provide a useful framework for creating ontologies. The first distinction is 

between types and instances. Instances correspond to individual entities (e.g., my 

left kidney, the patient identified by 1234), while types represent the common 

characteristics of sets of instances (e.g., a kidney is a bean-shaped, intra-

abdominal organ – properties common to all kidneys) [5]. Instances are related to 

the corresponding types by the relation instance of. For example, my left kidney 

is an instance of kidney. (It must be noted that most biomedical ontologies only 

represent types in reference to which the corresponding instances are recorded in 

patient records and in laboratory notebooks). Another fundamental distinction is 

between continuants and occurrents [6]. While continuants exist (endure) through 
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time, occurrents go through time in phases. Roughly speaking, objects (e.g., a 

liver, an endoscope) are continuants and processes (e.g., the flow of blood through 

the mitral valve) are occurrents. One final distinction is made between 

independent and dependent continuants. While the kidney and its shape are both 

continuants, the shape of the kidney “owes” its existence to the kidney (i.e., there 

cannot be a kidney shape unless there is a kidney in the first place). Therefore, the 

kidney is an independent continuant (as most objects are), whereas its shape is a 

dependent continuant (as are qualities, functions and dispositions, all dependent 

on their bearers). These distinctions are important for ontology developers 

because they help organize entities in the ontology and contribute to consistent 

ontology development, both within and, more importantly for interoperability, 

across ontologies. 

Building blocks: Top-level ontologies and Relation Ontology 

These ontological distinctions are so fundamental that they are embodied by top-

level ontologies such as BFO [7] (Basic Formal Ontology) and DOLCE [8] 

(Descriptive Ontology for Linguistic and Cognitive Engineering). Such upper-

level ontologies are often used as building blocks for the development of domain 

ontologies. Instead of organizing the main categories of entities of a given domain 

under some artificial root, these categories can be implemented as specializations 

of types from the upper-level ontology. For example, a protein is an independent 

continuant, the catalytic function of enzymes is a dependent continuant, and the 

activation of an enzyme through phosphorylation is an occurrent. Of note, even 

when they do not leverage an upper-level ontology, most ontologies implement 

these fundamental distinctions in some way. For example, the first distinction 

made among the semantic types in the UMLS Semantic Network [9] is between 

Entity and Event, roughly equivalent to the distinction between continuants and 

occurrents in BFO. While BFO and DOLCE are generic upper-level ontologies, 

Bio-Top [10]  – itself informed by BFO and DOLCE – is specific to the 

biomedical domain and provides types directly relevant to this domain, such as 

Chain Of Nucleotide Monomers and Organ System. BFO forms the backbone of 

several ontologies form the Open Biomedical Ontologies (OBO) family and Bio-

Top (or BioTopLite [11], a more concise version) has been reused by a few other 

ontologies. To date, BFO is probably the most often used top-level ontology. 

Some also consider the UMLS Semantic Network, created for categorizing 



4 

concepts from the UMLS Metathesaurus, an upper-level ontology for the 

biomedical domain [9]. 

 

In addition to the ontological template provided for types by upper-level 

ontologies, standard relations constitute an important building block for ontology 

development and help ensure consistency across ontologies. The small set of 

relations defined collaboratively in the Relation Ontology [5], including instance 

of, part of and located in, has been widely reused. 

 

Formalisms and tools for knowledge representation 

Many ontologies use description logics for their representation. Description logics 

(DLs) are a family of knowledge representation languages, with different levels of 

expressiveness [12]. The main advantage of using DL for ontology development 

is that DL allows developers to test the logical consistency of their ontology. This 

is particularly important for large biomedical ontologies. Ontologies including 

OCRe, OBI, SNOMED CT and the NCI Thesaurus, discussed later in this chapter, 

all rely on some sort of DL for their development. 

 

Ontologies are key enabling resources for the Semantic Web, the “web of data”, 

where resources annotated in reference to ontologies can be processed and linked 

automatically [13]. It is therefore not surprising that the main language for 

representing ontologies, OWL – the Web Ontology Language, has its origins in 

the Semantic Web. OWL is developed under the auspices of the World Wide Web 

Consortium (W3C). The current version of the OWL specification is OWL 2, 

which offers several profiles (sublanguages) corresponding to different levels of 

expressivity and support of DL languages [14]. Other Semantic Web technologies, 

such as RDF/S (Resource Description Framework Schema) [15] and SKOS 

(Simple Knowledge Organization System) [16] have also been used for 

representing  taxonomies and thesauri, respectively. 

 

 

The most popular ontology editor is Protégé, developed at the Stanford Center for 

Biomedical Informatics Research for two decades [17, 18]. Originally created for 

editing frame-based ontologies, Protégé now supports OWL and other Semantic 
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Web languages. Dozens of user-contributed plugins extend the standalone version 

(e.g., for visualization, reasoning services, support for specific data formats) and 

the recently developed web version of Protégé supports the collaborative 

development of ontologies.  

 

The OWL syntax and Protégé can be overwhelming to biologists and clinicians, 

who simply want to create an explicit specification of the knowledge in their 

domain. As an alternative, the OBO community has developed simple tools to 

support ontology development, including ROBOT [19] and the Onto-animal suite 

[20].  

 

OBO Foundry and other harmonization efforts 

Two major issues with biomedical ontologies are their proliferation and their lack 

of interoperability. There are several hundreds of ontologies available in the 

domain of life sciences, some of which overlap partially but do not systematically 

cross-reference equivalent entities in other ontologies. The existence of multiple 

representations for the same entity makes it difficult for ontology users to select 

the right ontology for a given purpose and requires the development of mappings 

between ontologies to ensure interoperability. Two recent initiatives have offered 

different solutions to address the issue of uncoordinated development of 

ontologies. 

 

The OBO Foundry is an initiative of the Open Biomedical Ontologies (OBO) 

consortium, which provides guidelines and serves as coordinating authority for 

the prospective development of ontologies [21]. Starting with the Gene Ontology, 

the OBO Foundry has identified the kinds of entities for which ontologies are 

needed and have selected candidate ontologies to cover a given subdomain, based 

on several criteria. Granularity and fundamental ontological distinctions form the 

basis for identifying subdomains. For example, independent continuants (entities) 

at the molecular level include proteins (covered by the protein ontology), while 

macroscopic anatomical structures are covered by the Foundational Model of 

Anatomy. In addition to syntax, versioning and documentation requirements, the 

OBO Foundry guidelines prescribe that OBO Foundry ontologies be limited in 

scope to a given subdomain and orthogonal. This means, for example, that an 
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ontology of diseases referring to anatomical structures as the location of diseases 

(e.g., mitral valve regurgitation has location mitral valve) should cross-reference 

entities from the reference ontology for this domain (e.g., the Foundational Model 

of Anatomy for mitral valve), rather than redefine these entities. While well 

adapted to coordinating the prospective development of ontologies, this approach 

is extremely prescriptive and virtually excludes the many legacy ontologies used 

in the clinical domain, including SNOMED CT and the NCI Thesaurus. 

The need for harmonization, i.e., making existing ontologies interoperable and 

avoiding duplication of development effort, has not escaped the developers of 

large clinical ontologies. SNOMED International, in charge of the development of 

SNOMED CT, is leading a similar harmonization effort in order to increase 

interoperability and coordinate the evolution of legacy ontologies and 

terminologies, including Logical Observation Identifiers Names and Codes 

(LOINC, for laboratory and clinical observations), the International Classification 

of Diseases (ICD), Orphanet (for rare diseases), the Global Medical Device 

Nomenclature (GMDN, for medical devices), and the International Classification 

for Nursing Practice (ICNP, for nursing diagnoses) [22]. 

 

Ontologies of particular relevance to clinical research 
Broadly speaking, clinical research ontologies can be classified into those that 

model the characteristics (or metadata) of the clinical research and those that 

model the data contents generated as a result of the research. [23] Research 

metadata ontologies center around characteristics like study design, operational 

protocol and methods of data analysis. They define the terminology and semantics 

necessary for formal representation of the research activity and aim to facilitate 

activities such as automated management of clinical trials and cross-study queries 

based on study design, intervention or outcome characteristics. Ontologies of data 

content focus on explicitly representing the information model, data elements and 

actual data (e.g., clinical observations, laboratory test results) collected by the 

researchers, with the aim to achieve data standardization and semantic 

interoperability. Important examples of the two types of ontologies will be 

described in more detail.  
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Research metadata ontology 

We did a survey of the public repositories of ontologies in the Open Biomedical 

Ontologies (OBO) library hosted by the National Center of Biomedical Ontology 

and the FAIRsharing.org website hosted by the University of Oxford. [24, 25] We 

used the keywords “clinical trial”, “research” and “investigation” for searching. 

We learned about the identified research metadata ontologies through their online 

information and literature search. For illustrative purposes, we describe three 

examples in more detail here: Ontology of Clinical Research (OCRe), Ontology 

for Biomedical Investigations (OBI) and Biomedical Research Integrated Domain 

Group model ontology (BRIDG). These ontologies are selected because there is 

evidence of their current use in real systems. All of them are available in the OWL 

syntax. How research metadata ontologies facilitate research workflow 

management and data integration is described later in this chapter. 

 

 

Ontology of Clinical Research 

The primary aim of OCRe is to support the annotation and indexing of human 

studies to enable cross-study comparison and synthesis. [26, 27] Developed as 

part of the Trial Bank Project, OCRe provides terms and relationships for 

characterizing the essential design and analysis elements of clinical studies. 

Domain-specific concepts are covered by reference to external vocabularies. 

Workflow-related characteristics (e.g., schedule of activities) and data structure 

specification (e.g., schema of data elements) are not within the scope of OCRe.  

 

The three core modules of OCRe are: 

1. Clinical module – the upper-level entities (e.g., clinician, study subject) 

2. Study design module –models study design characteristics (e.g., 

investigator assigned intervention, external control group) 

3. Research module – terms and relationships to characterize a study (e.g., 

outcome phenomenon, assessment method) 

OCRe entities are mapped to the Basic Formal Ontology (BFO). 
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Ontology for Biomedical Investigations 

Unlike OCRe which is rooted in clinical research, the origin of OBI is in the 

molecular biology research domain. [28, 29]  The forerunner of OBI is the MGED 

Ontology developed by the Microarray Gene Expression Data Society for 

annotating microarray data. Through collaboration with other groups in the 

‘OMICS’ arena such as the Proteomics Standards Initiative (PSI) and 

Metabolomics Standards Initiative (MSI), MGED Ontology was expanded to 

cover proteomics and metabolomics and was subsequently renamed Functional 

Genomics Investigation Ontology (FuGO). [30] The scope of FuGO was later 

extended to cover clinical and epidemiological research and biomedical imaging, 

resulting in the creation of OBI, which aims to cover all biomedical investigations 

[31]. 

 

As OBI is an international, cross-domain initiative, the OBI Consortium draws 

upon a pool of experts from many fields, including even fields outside biology 

such as environmental science and robotics. The goal of OBI is to build an 

integrated ontology to support the description and annotation of biological and 

clinical investigations, regardless of the particular field of study. OBI also uses 

BFO as its upper-level ontology and all OBI classes are a subclass of some BFO 

class. OBI covers all phases of the experimental process, and the entities or 

concepts involved, such as study designs, protocols, instrumentation, biological 

material, collected data and their analyses. OBI also represents roles and functions 

which can be used to characterize and relate these entities or concepts. 

Specifically, OBI covers the following areas: 

1. Biological material – e.g., blood plasma 

2. Instrument – e.g., microarray, centrifuge 

3. Information content – e.g., electronic medical record, biomedical image 

4. Design and execution of an investigation – e.g., study design, 

electrophoresis 

5. Data transformation – e.g., principal components analysis, mean 

calculation 

For domain-specific entities, OBI refers to other ontologies such as Gene 

Ontology (GO) and Chemical Entities of Biological Interest (ChEBI). The ability 

of OBI to adequately represent and integrate different biological experimental 
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processes and their components has been demonstrated in examples from several 

domains, including neuroscience and vaccination. 

 

Biomedical Research Integrated Domain Group (BRIDG) Model Ontology 

The Biomedical Research Integrated Domain Group (BRIDG) Model is a 

collaborative effort engaging stakeholders from the Clinical Data Interchange 

Standards Consortium (CDISC, described in more detail in a later chapter), HL7 

Regulated Clinical Research Information Management Technical Committee 

(RCRIM TC), National Cancer Institute (NCI) and US Food and Drug 

Administration (FDA). [32-34]The goal of the BRIDG Model is to produce a 

shared view of the dynamic and static semantics for the domain of protocol-driven 

research and its associated regulatory artifacts, defined as “the data, organization, 

resources, rules, and processes involved in the formal assessment of the utility, 

impact, or other pharmacological, physiological, or psychological effects of a 

drug, procedure, process, or device on a human, animal, or other subject or 

substance plus all associated regulatory artifacts required for or derived from this 

effort, including data specifically associated with post-marketing adverse event 

reporting”. 

 

One important function of the BRIDG model is to facilitate integration and 

meaningful data exchange from biological, translational and clinical studies with 

data from health systems by providing a common understanding of biomedical 

research concepts and their relationships with health care semantics. 

 

The BRIDG model (version 5.3) is divided into 9 subdomains: 

1. Common – concepts and semantics shared across different types of 

protocol-driven research e.g., people, organizations, places, materials 

2. Protocol representation – planning and design of a clinical research 

protocol e.g., study objective, outcome measure, inclusion criteria 

3. Study conduct – concepts related to execution of a research protocol e.g., 

study site investigator, funding source, specimen collection 

4. Adverse events – safety-related activities such as detection, evaluation and 

follow-up reporting of adverse events 
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5. Statistical analysis – planning and performance of the statistical analysis of 

data collected during execution of the protocol  

6. Experiment – design, planning, resourcing and execution of biomedical 

experiments e.g., devices and parameters, variables that can be 

manipulated 

7. Biospecimen – collection and management of biospecimens 

8. Molecular biology – including genomics, transcriptomics, proteomics, 

pathways, biomarkers and other concepts 

9. Imaging – covers imaging semantics such as image acquisition, processing 

and reconstruction 

 

Ability to map to other clinical trial ontologies has also been demonstrated. 

[35] One of the future priorities of BRIDG is vocabulary binding. Historically, 

BRIDG is ontology and terminology agnostic and no formal binding is 

provided between vocabularies and classes and attributes within BRIDG. 

Recognizing the value of improving semantic interoperability, future work 

will bind BRIDG class attributes to one or more common terminologies from 

medicine and research. 

 

The BRIDG model is available as an OWL ontology. It is also available as a 

UML representation (intended for domain experts and architects), and as an 

HL7 reference information model (RIM) representation in Visio files. 

 

Data content ontology 

While there are relatively few research metadata ontologies, there is a myriad of 

ontologies that cover research data contents. Unlike metadata ontologies, in this 

group the distinction between ontologies, vocabularies, classifications and code 

sets often gets blurred, and we shall refer to all of them as “terminologies”. As 

clinical research is increasingly conducted based on EHR data (e.g., pragmatic 

trials), the interoperability between terminologies for clinical research and 

healthcare is becoming more important. We have chosen several terminologies for 

more detailed discussion here because of their role in clinical research and in 

electronic health records. These terminologies are the National Cancer Institute 

Thesaurus (NCIT), Systematized Nomenclature of Medicine – Clinical Terms 
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(SNOMED CT), Logical Observation Identifiers Names and Codes (LOINC), 

RxNorm, International Classifications of Diseases (ICD), Current Procedural 

Terminology (CPT) and Human Phenotype Ontology (HPO). All these 

terminologies are available through the Unified Medical Language System 

(UMLS) and the BioPortal ontology repositories (see below). 

 

National Cancer Institute Thesaurus (NCIT) 

NCIT is developed by the U.S. National Cancer Institute (NCI). It arose initially 

from the need for an institution-wide common terminology to facilitate 

interoperability and data sharing by the various components of NCI. [36-38] 

NCIT covers clinical and basic sciences as well as administrative areas. Even 

though the content is primarily cancer-centric, since cancer research spans a broad 

area of biology and medicine, NCIT can potentially serve the needs of other 

research communities. Due to its coverage of both basic and clinical research, 

NCIT is well positioned to support translational research.  

 

NCIT contains over about 170,000 concepts organized into 19 disjoint domains. A 

concept is allowed to have multiple parents within a domain. NCIT covers the 

following areas: 

1. Neoplastic and other diseases 

2. Findings and abnormalities 

3. Anatomy, tissues and subcellular structures 

4. Agents, drugs and chemicals 

5. Genes, gene products and biological processes 

6. Animal models of disease 

7. Research techniques, equipment and administration 

NCIT is updated monthly. It is in the public domain under an open content license 

and is distributed by the NCI in OWL format. 

 

SNOMED Clinical Terms (SNOMED CT) 

SNOMED CT was originally developed by the College of American Pathologists. 

Its ownership was transferred to SNOMED International (originally called 

International Health Terminology Standards Development Organisation, 

IHTSDO) in 2007 to enhance international governance and adoption. [39] 
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SNOMED CT has been steadily gaining momentum as the emerging international 

standard clinical terminology. The number of member countries of SNOMED 

International has more than quadrupled since its inception. There are currently 42 

member countries including U.S., Canada, Argentina, United Kingdom, 

Netherlands, Germany, Spain, India, Malaysia, Australia and New Zealand. 

SNOMED CT is used in over 50 countries in the world. [40] SNOMED CT is the 

most comprehensive clinical terminology available today, with over 340,000 

active concepts. The concepts are organized into 19 disjoint hierarchies. Within 

each hierarchy, a concept is allowed to have multiple parents. Additionally, 

SNOMED CT provides a rich set of associated relations (across hierarchies), 

which form the basis for the logical definitions of its concepts. The principal use 

of SNOMED CT is to encode clinical information (e.g., diseases, findings, 

procedures). It also has comprehensive coverage of drugs, organisms and 

anatomy. In the U.S., SNOMED CT was first designated as terminology for the 

problem list, procedures and other data fields by the Meaningful Use of EHR 

incentive program of the U.S. Centers for Medicare & Medicaid Services (CMS) 

[41, 42]. After the Meaningful Use program ended in 2017, the requirements for 

SNOMED CT use persist in the subsequent Merit-based Incentive Payment 

System (MIPS) and Promoting Interoperability programs. [43] 

 

SNOMED CT is updated twice every year. A more frequent release (monthly) is 

currently being planned. The use of SNOMED CT is free in all SNOMED 

International member countries, in low-income countries as defined by the World 

Bank, and for qualified research projects in any country. SNOMED CT is 

distributed by the National Release Center of the SNOMED International member 

countries. 

 

Logical Observation Identifiers, Names and Codes (LOINC) 

LOINC is developed by the Regenstrief Institute, a nonprofit biomedical 

informatics and healthcare research organization associated with Indiana 

University. [44] LOINC’s primary role is to provide identifiers and names for 

laboratory and clinical observations that will facilitate the unambiguous exchange 

and aggregation of clinical results for many purposes, including care delivery, 

quality assessment, public health and research purposes. [45] The laboratory 
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section of LOINC covers the usual categories in clinical laboratory testing such as 

chemistry, urinalysis, hematology, microbiology, molecular genetics and others. 

This section accounts for about two-thirds of LOINC codes. The clinical section 

covers a very broad scope, from clinical documents, anthropomorphic measures to 

cardiac and obstetrical ultrasound.  Each LOINC code corresponds to a single 

kind of observation, measurement or test result. A LOINC term includes six parts: 

component, kind of property, time aspect, system, type of scale and type of 

method (optional). LOINC has over 90,000 terms. In 2013, the Regenstrief 

Institute and SNOMED International formed a long-term collaborative 

relationship with the objective of developing coded content to support order entry 

and result reporting by linking SNOMED CT and LOINC. This landmark 

agreement aims to reduce duplication of effort and provide a common framework 

within which to use the two terminologies. 

 

In the U.S., LOINC has been adopted by large reference laboratories, health 

information exchanges, health care organizations and insurance companies. 

LOINC is also a designated terminology for the EHR under the Meaningful Use 

program. Internationally, LOINC has over 60,000 registered users from 172 

countries. At least 15 countries have chosen LOINC as a national standard. 

LOINC is updated twice a year. Use of LOINC is free upon agreeing to the terms-

of-use in the license. 

 

RxNorm 

RxNorm is a standard nomenclature for medications developed by NLM. [46] 

RxNorm provides normalized names for clinical drugs and links its names to 

many of the drug vocabularies commonly used in pharmacy management and 

drug interaction software, including those of First Databank, Micromedex, Gold 

Standard Drug Database, and Multum. RxNorm also integrates drugs from 

sources like DrugBank and the Anatomical Therapeutic Chemical (ATC) drug 

classification system, often used in research projects. By providing links between 

these vocabularies, RxNorm can mediate messages between systems not using the 

same software and vocabulary. The focus of RxNorm is at the clinical drug level, 

represented as a combination of ingredients, strength and dose form. The clinical 

drug is linked by semantic relationships to other drug entities such as ingredients 
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and drug packs. Non-therapeutic radiopharmaceuticals, bulk powders, contrast 

media, food, dietary supplements, and medical devices (e.g., bandages and 

crutches) are all out of scope for RxNorm. RxNorm has about 37,000 generic 

clinical drugs, 22,000 branded clinical drugs and 13,000 ingredients. The Current 

Prescribable Content Subset is a subset of currently prescribable drugs in 

RxNorm. The subset is intended to be an approximation of the prescription drugs 

currently marketed in the U.S., and it also includes some frequently prescribed 

over-the-counter drugs.  

 

RxNorm is the designated terminology for medications and medication allergies 

according to the Meaningful Use incentive program. The Centers for Medicare 

and Medicaid Services (CMS) uses RxNorm in its Formulary Reference File and 

to define the value sets for clinical quality measures. The National Council for 

Prescription Drug Programs (NCPDP) uses RxNorm in its SCRIPT e-prescribing 

and Formulary and Benefit standards. The Department of Veterans Affairs (VA) 

and the Department of Defense (DoD) use RxNorm to enable bi-directional real-

time data exchange for medication and drug allergy information. [47] 

 

RxNorm is released as a full data set every month. There are weekly updates for 

newly approved drugs. To download the RxNorm files, a UMLS user license is 

required because some RxNorm content comes from commercial drug knowledge 

sources and is proprietary. 

 

International Classification of Disease (ICD) 

The root of ICD can be traced back to the International List of Causes of Death 

created 150 years ago. [48] ICD is endorsed by the World Health Organization 

(WHO) to be the international standard diagnostic classification for epidemiology, 

health management and clinical purposes.  The current version of ICD in 

widespread use is ICD-10 that was first published in 1992. Apart from reporting 

national mortality and morbidity statistics to WHO, many countries use ICD-10 

for reimbursement and healthcare resource allocation. To better suit their national 

needs, over 20 countries have created national extensions to ICD-10, such as ICD-

10-AM (Australia), ICD-10-CA (Canada) and ICD-10-CM (U.S.). In the U.S., 

ICD-9-CM was used until 2015 and was replaced by ICD-10-CM. Because of the 
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requirement of ICD codes for reimbursement, they are ubiquitous in the EHR and 

insurance claims data. There is a four-fold increase in the number of codes from 

ICD-9-CM to ICD-10-CM, due to the more granular disease codes and capture of 

additional healthcare dimensions (e.g., episode of encounter, stage of pregnancy). 

[49] CMS provides forward and backward maps between ICD-9-CM and ICD-10-

CM, which are called General Equivalence Maps (GEMs). These maps are useful 

for conversion of coded data between the two versions of ICD. [50] 

 

While ICD-9-CM covers both diagnosis and procedures, ICD-10-CM does not 

cover procedures. A brand-new procedure coding system called ICD-10-PCS was 

developed by CMS to replace the ICD-9-CM procedure codes for reporting of 

inpatient procedures. [51] ICD-10-PCS is a radical departure from ICD-9-CM and 

uses a multi-axial structure. Each ICD-10-PCS code has seven digits, each 

covering one aspect of a procedure such as body part, root operation, approach 

and device. As a result of the transition, there is a big jump in the number of 

procedure codes from about 4,000 to over 70,000. 

 

ICD-11 was adopted at the World Health Assembly in May 2019 and Member 

States are committed to use it for mortality and morbidity reporting starting from 

2022. [52] ICD-11, developed over a long hiatus of 27 years (compared to the 

usual update cycle of about 10 years), has incorporated several brand new features 

not seen in earlier versions. [53] One such innovation is a Foundation component, 

which is a knowledge base from which the official classifications (called 

“linearizations”) can be derived. ICD-11 supports post-coordination (called “code 

clustering”), which is the expansion of the meaning of existing codes through 

code combination. ICD-11 also fully embraces digital technologies by providing 

online browsers, coding tools and application programming interfaces (API). 

Because of the expanded capabilities of ICD-11, researchers are looking into the 

feasibility of using the international version directly in morbidity coding, without 

creating a national extension such as ICD-10-CM. [54] 

 

Both ICD-10-CM and ICD-10-PCS are updated annually and are free for use 

without charge. 
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Current Procedural Terminology (CPT) 

CPT is developed by the American Medical Association (AMA) to encode 

medical services and procedures. In the U.S., CPT is used to report physician 

services, many non-physician services, and surgical procedures performed in 

hospital outpatient departments and ambulatory surgery centers. The scope of 

CPT includes physician consultation and procedures, physical and occupational 

services, radiological and clinical laboratory investigations, transportation 

services, and others. There are three categories of CPT codes. Category I codes 

are five-digit numeric codes. For a procedure to receive a category 1 code, it must 

be an established and approved procedure with proven clinical efficacy performed 

by many healthcare professionals. Category II codes are five-character 

alphanumeric codes ending with an ‘F’. These are supplementary tracking codes 

for quality and performance measurement. Category III codes are temporary five-

character alphanumeric codes ending with ‘T’. These codes are for emerging 

technologies that do not yet qualify for regular category I codes. There are over 

10,000 category I codes. CPT is updated annually. Use of CPT requires a license 

from AMA.  

  

Human Phenotype Ontology 

The Human Phenotype Ontology (HPO) provides comprehensive bioinformatic 

resources for the analysis of human diseases and phenotypes, offering a 

computational bridge between genome biology and clinical medicine. [55, 56] 

The description of phenotypic variation has become a central topic for 

translational research and genomic medicine, and computable descriptions of 

human disease using HPO phenotypic profiles (also known as ‘annotations’) have 

become a key element in a number of algorithms being used to support genomic 

discovery and diagnostics. Launched in 2008, the three components of the HPO 

project are the phenotype vocabulary, disease-phenotype annotations and the 

algorithms that operate on these. The HPO is now a worldwide standard for 

phenotype exchange. Broad clinical, translational and research applications using 

the HPO include genomic interpretation for diagnostics, gene-disease discovery, 

mechanism discovery and cohort analytics, all of which assist in realizing 

precision medicine. HPO has been used to annotate rare diseases in the Orphanet 

rare disease database, whose nomenclature has been recommended by the 
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European Commission expert group of rare diseases. [57] HPO is also an essential 

component of the Monarch Initiative, allowing computational cross-species 

analysis. [58] Furthermore, HPO provides annotations to diseases defined by 

Online Mendelian Inheritance in Man (OMIM), a comprehensive, authoritative 

compendium of human gene and genetic phenotypes. [59, 60] 

 

The HPO differs from other clinical terminologies in that it has substantially 

deeper and broader coverage of phenotypes. Because of this, HPO can support 

“deep phenotyping”, which is defined as the precise and comprehensive analysis 

of phenotypic abnormalities in which the individual components of the phenotype 

are observed and described. [61] HPO contains over 13,000 terms in five 

hierarchies: phenotypic abnormality, mode of inheritance, clinical modifier, 

clinical course and frequency. 

 

HPO is released several times a year and is freely available. 

Ontology repositories 
Because most biomedical terminologies and ontologies are developed by different 

groups and institutions independently of each other and made available to users in 

heterogeneous formats, interoperability among them is generally limited. In order 

to create some level of semantic interoperability among ontologies and facilitate 

their use, several repositories have been created. Such repositories provide access 

to integrated ontologies through powerful graphical and programming interfaces. 

This section presents the two largest repositories: the Unified Medical Language 

System (UMLS) and the BioPortal. 

Unified Medical Language System (UMLS) 

The U.S. National Library of Medicine (NLM) started the UMLS project in 1986. 

One of the main goals of UMLS is to aid the development of systems that help 

health professionals and researchers retrieve and integrate electronic biomedical 

information from a multitude of disparate sources. [62-65] One major obstacle to 

cross-source information retrieval is that the same information is often expressed 

differently in different vocabularies used by the various systems and there is no 

universal biomedical vocabulary. Knowing that to dictate the use of a single 

vocabulary is not realistic, the UMLS circumvents this problem by creating links 
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between the terms in different vocabularies. The UMLS is available free of 

charge. Users need to acquire a license because some of the UMLS contents are 

protected by additional license requirements. [66] Currently, there are over 20,000 

UMLS licensees in more than 120 countries. The UMLS is released twice a year. 

 

UMLS knowledge sources 

The Metathesaurus of the UMLS is a conglomeration of a large number of terms 

that exist in biomedical vocabularies.  All terms that refer to the same meaning 

(i.e., synonymous terms) are grouped together in the same UMLS concept. Each 

UMLS concept is assigned a permanent unique identifier (the Concept Unique 

Identifier, CUI), which is the unchanging pointer to that concept. This concept-

based organization enables cross-database information retrieval based on 

meaning, independent of the lexical variability of the terms themselves. In the 

2022AA release, the UMLS Metathesaurus incorporates 159 source vocabularies 

and includes terms in 25 languages. There are 4.5 million biomedical concepts 

and 13 million unique terms. The Metathesaurus also contains relationships 

between concepts. Most of these relationships are derived from relationships 

asserted by the source vocabularies. To edit the Metathesaurus, the UMLS editors 

use a sophisticated set of lexical and rule-based matching algorithms to help them 

focus on areas that require manual review.  

 

The Semantic Network is another resource in the UMLS. The Semantic Network 

contains 127 semantic types and 54 kinds of relationship between the semantic 

types. The Semantic Network is primarily used for the categorization of UMLS 

concepts [9]. All UMLS concepts are assigned at least one semantic type. The 

semantic relationships represent the possible relationships between semantic 

types, which may or may not hold true at the concept level.  

 

UMLS tooling 

The UMLS is distributed as a set of relational tables that can be loaded in a 

database management system. Alternatively, a web-based interface and an 

application programming interface (API) are provided. The UMLS Terminology 

Services (UTS) is a web-based portal that can be used for downloading UMLS 

data, browsing the UMLS Metathesaurus, Semantic Network and SPECIALIST 
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Lexicon, and for accessing the UMLS documentation. Users of the UTS can enter 

a biomedical term or the identifier of a biomedical concept in a given ontology, 

and the corresponding UMLS concept will be retrieved and displayed, showing 

the names for this concept in various ontologies, as well as the relations of this 

concept to other concepts. For example, a search on “addison’s disease” retrieves 

all names for the corresponding concept (C0001403) in over 25 ontologies 

(version 2022AA, as of June 2022), including SNOMED CT, MedDRA, and the 

International Classification of Primary Care. Each ontology can also be navigated 

as a tree. In addition to the graphical interface, the UTS also offers an application 

programming interface (API) based on RESTful web services. This API provides 

access to the properties and relations of Metathesaurus concepts, as well as 

semantic types and lexical entries. Most functions of the UTS API require UMLS 

user credentials to be checked to gain access to UMLS data. Support for user 

authentication is provided through the UTS API itself. 

 

UMLS applications 

The UMLS provides convenient one-stop access to diverse biomedical 

vocabularies, which are updated as frequently as resources allow. One important 

contribution of the UMLS is that all source vocabularies are converted to a 

common schema of representation, with the same file structure and object model. 

This makes it much easier to build common tools that deal with multiple 

vocabularies, without the need to grapple with the native format of each. 

Moreover, this also enhances the understanding of the vocabularies as the 

common schema abstracts away from variations in naming conventions. For 

example, a term may be called ‘preferred name’, ‘display name’ or ‘common 

name’ in different vocabularies, but if they are determined to mean the same type 

of term functionally, they are all referred to as ‘preferred term’ in the UMLS. 

 

One common use of the UMLS is inter-terminology mapping. The UMLS concept 

structure enables easy identification of equivalent terms between any two source 

terminologies. In addition to mapping by synonymy, methods have been reported 

that create inter-terminology mapping by utilizing relationships and lexical 

resources available in the UMLS. [67] Natural language processing is another 

important use of the UMLS, making use of its large collection of terms, the 



20 

SPECIALIST Lexicon and the lexical tools. MetaMap is a publicly available tool 

developed by NLM which aims to identify biomedical concepts in free text. [68, 

69] This is often the first step in data-mining and knowledge discovery. Other 

uses of the UMLS include terminology research, information indexing and 

retrieval, and terminology creation. [70] 

 

BioPortal 

BioPortal is developed by the National Center for Biomedical Ontology (NCBO), 

one of the National Centers for Biomedical Computing, created in 2004. The goal 

of NCBO is “to support biomedical researchers in their knowledge-intensive 

work, by providing online tools and a Web portal enabling them to access, review, 

and integrate disparate ontological resources in all aspects of biomedical 

investigation and clinical practice.” BioPortal not only provides access to 

biomedical ontologies, it also helps link ontologies to biomedical data [71]. 

 

BioPortal ontologies 

The current version of BioPortal integrates over one thousand ontologies for 

biomedicine, biology and life sciences, and includes roughly 12 million concepts 

(or classes). A number of ontologies integrated in the UMLS are also present in 

BioPortal (e.g., Gene Ontology, LOINC, NCIT, and SNOMED CT). However, 

BioPortal also provides access to the ontologies form the Open Biomedical 

Ontologies (OBO) family, an effort to create ontologies across the biomedical 

domain. In addition to the Gene Ontology, OBO includes ontologies for chemical 

entities (e.g., ChEBI), biomedical investigations (OBI), phenotypic qualities 

(PATO) and anatomical ontologies for several model organism, among many 

others. Some of these ontologies have received the “seal of approval” of the OBO 

Foundry (e.g., Gene Ontology, ChEBI, OBI, and Protein Ontology). Finally, the 

developers of biomedical ontologies can submit their resources directly to 

BioPortal, which makes BioPortal an open repository, as opposed to the UMLS. 

Examples of such resources include the Research Network and Patient Registry 

Inventory Ontology, the Informed Consent Ontology and the Ontology of Clinical 

Research. BioPortal supports several popular formats for ontologies, including 

OWL, OBO format and the Rich Release Format (RRF) of the UMLS. 
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BioPortal tooling 

BioPortal is a web-based application allowing users to search, browse, navigate, 

visualize and comment on the biomedical ontologies integrated in its repository. 

For example, a search on “addison’s disease” retrieves the corresponding entries 

in 55 ontologies (as of June 2022), including SNOMED CT, the Human 

Phenotype Ontology and the Mondo Disease Ontology. Visualization as tree or 

graph is offered for each ontology. The most original feature of BioPortal is to 

support the addition of marginal notes to various elements of an ontology, e.g., to 

propose new terms or suggest changes in relations. Such comments can be used as 

feedback by the developers of the ontologies and can contribute to the 

collaborative editing on ontologies. Users can also publish reviews of the 

ontologies. In addition to the graphical interface, BioPortal also offers an 

application programming interface (API) based on RESTful web services and is 

generally well integrated with Semantic Web technologies, as it provides URIs for 

each concept, which can be used as a reference in linked data applications. 

 

BioPortal applications 

Similar to the UMLS, BioPortal identifies equivalent concepts across ontologies 

in its repositories (e.g., between the term listeriosis in DermLex and in Medline 

Plus Health Topics). The BioPortal Annotator is a high-throughput named entity 

recognition system available both as an application and a web service. The 

Annotator identifies the names of biomedical concepts in text using fast string 

matching algorithms. Finally, BioPortal also provides the Ontology 

Recommender, a tool that suggests the most relevant ontologies based on an 

excerpt from a biomedical text or a list of keywords. 

 

Approaches to ontology alignment in ontology repositories 

Apart from providing access to existing terminologies and ontologies, the UMLS 

and BioPortal also identify bridges between these artifacts, which will facilitate 

inter-ontology integration or alignment. For the UMLS, as each terminology is 

added or updated, every new term is comprehensively reviewed (by lexical 

matching followed by manual review) to see if they are synonymous with existing 

UMLS terms. If so, the incoming term is grouped under the same UMLS concept. 

More recently, leveraging deep learning techniques to detect synonymy in the 
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UMLS has been an active area of research. [72, 73] In the BioPortal, equivalence 

between different ontologies is discovered by a different approach. For selected 

ontologies, possible synonymy is identified through algorithmic matching alone 

(without human review). It has been shown that simple lexical matching works 

reasonably well in mapping between some biomedical ontologies in BioPortal, 

compared to more advanced algorithms [74]. Users can also contribute 

equivalence maps between ontologies. 

Ontology in action – Uses of ontologies in clinical research 
Ontologies can be used to facilitate clinical research in multiple ways. In the 

following section, we shall highlight three areas for discussion:  research 

workflow management, data integration and electronic phenotyping. However, 

these are not meant to be mutually exclusive categories (e.g., the ontological 

modeling of the research design can facilitate workflow management, as well as 

data sharing and integration).  

 

Research workflow management 

In most clinical trials, knowledge about protocols, assays and specimen flow is 

stored and shared in textual documents and spreadsheets. The descriptors used are 

neither encoded nor standardized. Standalone computer applications are often 

used to automate specific portions of the research activity (e.g., trial authoring 

tools, operational plan builders, study site management software). These 

applications are largely independent and rarely communicate with each other. 

Integration of these systems will result in more efficient workflow management, 

improve the quality of the data collected and simplify subsequent data analysis. 

However, the lack of common terminology and semantics to describe the 

characteristics of a clinical trial impedes efforts of integration. Ontology-based 

integration of clinical trials management applications is an attractive approach. 

One early example is the Immune Tolerance Network, a large distributed research 

consortium engaged in the discovery of new therapy for immune-related 

disorders.  The Network created the Epoch Clinical Trial Ontologies and built an 

ontology-based architecture to allow sharing of information between disparate 

clinical trial software applications. [75] Based on the ontologies, a clinical trial 

authoring tool had also been developed. [76] 
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Another notable effort in the use of ontology in the design and implementation of 

clinical trials is the Advancing Clinical Genomic Trials on Cancer (ACGT) 

Project in Europe.  ACGT is a European Union co-funded project that aims at 

developing open-source, semantic and grid-based technologies in support of post 

genomic clinical trials in cancer research. One component of this project is the 

development of a tool called Ontology-based Trial Management Application 

(ObTiMA), which has two main components: the Trial Builder and the Patient 

Data Management System, based on their master ontology called ACGT Master 

Ontology (ACGT-MO). [77-80] Trial Builder is used to create ontology-based 

case report forms (CRF) and the Patient Data Management System facilitates data 

collection by front-line clinicians.  

 

Data integration 

In the post-genomic era of research, the power and potential value of linking data 

from disparate sources is increasingly recognized. A rapidly developing branch of 

translational research exploits the automated discovery of association between 

clinical and genomics data. [81]  Ontologies can play important roles at different 

strategic steps of data integration. [82] 

 

Data integration, which aims to align multiple data sources to support activities 

such as cross-study querying or data mining, is no trivial task. Full data 

integration requires alignment at both the metadata and data level. Available 

methods and resources differ depending on whether data alignment is 

incorporated into the research design before data collection (a priori, or 

prospective alignment), or that alignment occurs afterwards (post hoc, or 

retrospective alignment). (Table 1) Generally speaking, prospective alignment is a 

better approach, as “retrofitting” can result in data loss or distortion. However, 

retrospective alignment is often the only available option when dealing with 

already existing data, for example, in the secondary use of EHR for research. 

 

Table 1. Resources and approaches for data integration 

 Prospective alignment Retrospective alignment 
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Metadata Research metadata 

ontologies 

Research metadata 

ontologies 

Common data models 

Data Common data elements 

Ontology binding 

Ontology mapping 

 

Research metadata ontologies provide a standardized, machine-readable way to 

characterize a research activity. The process of assigning standardized terms to 

describe a study (e.g., the randomization design and statistical data analysis 

methodology of a clinical trial) is called metadata annotation. Annotation can be 

done prospectively (at the design phase) or retrospectively (after the study is 

finished). Properly annotated datasets can support cross-study queries such as 

“find all placebo-controlled trials in which a macrolide is used as an intervention”. 

One stated goal of OCRe is to support the development of an end-to-end 

informatics infrastructure that enables data acquisition, logical curation and 

federated querying of human studies. [27] Using similar principles and 

approaches for data discovery and sharing, the Vivli platform promotes the reuse 

of clinical research data. [83, 84] Vivli acts as a neutral broker between data 

contributors, data users and the wider data sharing community. It provides an 

independent data repository, in-depth search engine and a cloud-based, secure 

analytics platform.  

 

The use of OBI in the Investigation, Study, Assay (ISA) Project is another 

example of how research metadata ontology can facilitate data integration and 

sharing. The ISA Project supports managing and tracking biological experiment 

metadata to ensure its preservation, discoverability and re-use. [85] Concepts from 

OBI are used to annotate the experimental design and other characteristics, so that 

queries such as “retrieve all studies with balanced design” or “retrieve all studies 

where study groups have at least 3 samples” are possible. In a similar vein, the 

BRIDG model ontology is used in various projects to facilitate data exchange. 

One example is the SALUS (Security and interoperability in next generation 

Public Protection and Disaster Relief (PPDR) communication infrastructures) 

Project of the European Union. [86] BRIDG is used to provide semantics for the 
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project’s metadata repository to allow meaningful exchange of data between 

European electronic health records. 

 

Despite the benefits of characterizing research using metadata ontologies, the task 

of annotation is non-trivial. To help alleviate this burden, the Center for Expanded 

Data Annotation and Retrieval (CEDAR) is established. [87, 88] CEDAR focuses 

on the use of metadata templates which include controlled terms and synonyms 

for metadata elements. The platform promotes the creation and sharing of 

metadata templates, which will facilitate the definition, annotation and searching 

of research datasets. The creators of CEDAR, Stanford Center for Biomedical 

Informatics Research, are also the creators of BioPortal and Protégé. While 

Protégé helps create sophisticated ontologies, BioPortal provides a community 

repository for ontologies from any domain, and CEDAR uses BioPortal to enable 

interoperable metadata pipelines. 

 

While research metadata ontologies are most useful in annotating original 

biomedical research, the integration of existing datasets (e.g., EHR, claims data) is 

more commonly done with the use of common data models (CDM). A CDM is a 

way of organizing data into a standard structure. [89] The most common use of 

CDMs in healthcare research is to standardize the format and content of 

observational data, so that common research methodology, software application 

and tools can be applied across datasets from multiple healthcare organizations. In 

the last two decades, multiple CDMs have been developed by different groups for 

various purposes. The existence of multiple “common” data models can itself be 

an impediment to data integration and interoperability. The Common Data Model 

Harmonization (CDMH) project led by the Office of the National Coordinator for 

Health Information Technology (ONC) addresses this problem. [90] Four CDMs 

from FDA’s Sentinel Initiative [91], Patient-Centered Outcomes Research 

Network (PCORnet) [92], Informatics for Integrating Biology & the Bedside 

(i2b2) [93] and Observational Medical Outcomes Partnership (OMOP) [94] are 

harmonized using the BRIDG model, which serves as an intermediate model to 

align the semantics of the data elements in each CDM. In addition, a subset of the 

data elements is mapped from BRIDG to HL7 Fast Healthcare Interoperability 

Resources® (FHIR®) standard. FHIR is used because it enables data access using 
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application programming interfaces (APIs), and there is growing adoption of the 

FHIR standard among both healthcare and health research stakeholders. 

 

The National COVID Cohort Collaborative (N3C) is an excellent example of how 

CDMs can facilitate the efficient and accurate integration of data from disparate 

sources. [95] In response to the COVID-19 pandemic, N3C is a novel partnership 

that includes the Clinical and Translational Science Awards (CTSA) Program 

hubs (60 institutions), the National Center for Advancing Translational Science 

(NCATS), the Center for Data to Health (CD2H) and the community. One 

principal goal of N3C is to pool together patient-level data from many sources to 

facilitate open science. The Collaborative identifies four CDMs that need to be 

harmonized (ACT Network, PCORnet, OMOP and TriNetX) and decides to use 

OMOP as the canonical model due to its maturity, documentation, and open-

source tools for quality monitoring, data maintenance, term mapping, and 

analytics. The other three CDMs are mapped to OMOP. The mapping is greatly 

facilitated by previous work by CDMH and related projects. 

 

Common data elements (CDEs) are important tools to facilitate prospective 

alignment at the data level. In research, data elements are units of data collection 

comprising one or more questions with a set of valid responses. [96] A CDE is a 

combination of a precisely defined question (variable), paired with a specified set 

of responses to the question, which is common to multiple datasets or used across 

different studies. [97] The adoption of CDEs in research can lead to improvement 

in data accuracy, reproducibility and scientific integrity. However, there are 

multiple barriers to the re-use of CDEs, including the lack of awareness or 

understanding of CDEs, and the absence of incentives. [96] The NIH CDE 

Repository is launched to address some of these issues. [98] It provides a single 

point of access to structured human and machine readable definitions of CDEs 

that have been recommended or required by NIH Institutes and Centers and other 

organizations for use in research and other purposes.  

 

Data content ontologies represent “the last mile” in the process of data integration. 

Biomedical data are often encoded with data content ontologies (common 

examples are described earlier), and the alignment of these ontologies is essential 
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in preserving the meaning of the data. In the prospective data alignment scenario, 

the researcher can specify the ontology to be used in data collection as part of 

their research protocol. When researchers re-use CDEs, the list of allowable 

responses is often a list of codes from a standard ontology. The process of linking 

a data element to a specific ontology is called “ontology (or terminology) 

binding”. In the retrospective data alignment scenario, since data is often already 

encoded in some ontology, alignment requires a map (or “crosswalk”) between 

ontologies. Ontology mapping is the process of finding the closest match of a 

code from one ontology (the source) in another ontology (the target). Exact 

equivalence between the source and target codes is often not available, and 

approximate matching is common. Proper use of these maps requires adequate 

understanding of the nature, directionality and limitations of the maps to avoid 

information loss or distortion. Creation and maintenance of inter-ontology maps is 

labor- and resource-intensive. The traditional approach is to create pairwise maps 

between ontologies that need to be integrated. An alternative approach is to map 

multiple ontologies to a central core terminology that will serve as a lingua franca 

for code translation. This is the approach used by the OHDSI consortium. Apart 

from the OMOP CDM, OHDSI also provides a rich collection of data alignment 

resources, including the OMOP Standardized Vocabularies. OHDSI supports over 

100 vocabularies, most of them are adopted from external sources (e.g., 

SNOMED CT, ICD-10-CM). OHDSI designates one standard concept to 

represent the meaning of each clinical event, and the other concepts are designated 

as non-standard (or source concepts) and mapped to the standard concepts. [99] 

 

 

One particular form of data integration supported by ontologies is represented by 

what has become known as “Linked Data” in the Semantic Web community 

[100]. The foundational idea behind linked data and the Semantic Web is that 

resources semantically annotated to ontologies can be interrelated when they refer 

to the same entities. In practice, datasets are represented as graphs in RDF, the 

Resource Description Framework, in which nodes (representing entities) can be 

shared across graphs, enabling connections among graphs. Interestingly, a 

significant portion of the datasets currently interrelated as Linked Data consists of 

biomedical resources, including PubMed, KEGG and DrugBank. For privacy 
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reasons, very few clinical datasets have been made publicly available, and no such 

datasets are available as Linked Data yet. However, researchers have illustrated 

the benefits of Semantic Web technologies for translational research [101-104]. 

Ontologies support Linked Data in three important ways. Ontologies provide a 

controlled vocabulary for entities in the Semantic Web; integrated ontology 

repositories, such as the UMLS and BioPortal, support the reconciliation of 

entities annotated to different ontologies; finally, relations in ontologies can be 

used for subsumption and other kinds of reasoning. An active community of 

researchers is exploring various aspects of biomedical linked data as part of the 

Semantic Web Health Care and Life Sciences interest group [105], with particular 

interest in the domain of drug discovery through the Linking Open Drug Data 

initiative [106]. Another example is the Biomedical Data Translator program 

launched by NCATS. [107] The goal is to enable “data-driven clinical 

regrouping” of patients based on shared molecular and cellular biomarkers, and 

thereby generate new biomedical hypotheses, promote discovery and improve 

clinical decision making. “Knowledge graphs” are created by linking multiple 

disparate data sources through privacy-preserving methods to answer specific 

questions through automated reasoning. 

 

Electronic phenotyping 

Data in electronic health records (EHRs) are becoming increasingly available for 

clinical and translational research. Through projects such as the Electronic 

Medical Records and Genomics (eMERGE) Network, [108] National Patient-

Centered Clinical Research Network (PCORnet), [109] Strategic Health IT 

Advanced Research Projects (SHARP), [110] Observational Health Data Sciences 

and Informatics (OHDSI), [111] and NIH Health Care Systems Collaboratory, 

[112] it has been demonstrated that EHR data can be used to develop research-

grade disease phenotypes with sufficient accuracy to identify traits and diseases 

for biomedical research and clinical care. 

 

Electronic phenotyping refers to activities and applications that use data captured 

in the delivery of healthcare (typically from EHRs and insurance claims) to 

identify individuals or populations (cohorts) with clinical characteristics, events or 

service patterns that are relevant to interventional, observational, prospective, 
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and/or retrospective studies. [112] So far, the most tried-and-true approach to 

electronic phenotyping utilizes explicit, standardized queries – consisting of 

logical operators, data fields and list of codes, often from standardized 

terminologies – that can be run against different data sources to identify 

comparable populations. Due to the heterogeneity across care settings, data 

models and patient populations, designing phenotype definitions is complex and 

often requires customization for different data sources. However, the validity of 

selected phenotype definitions and the comparability of patient populations across 

different health care settings has been reported. [113-117] Newer approaches in 

electronic phenotyping involving techniques such as machine learning have been 

studied with promising results.  [118-121] However, manually curated phenotype 

definitions are still the most employed phenotyping method. 

 

Most phenotype definitions to date use both structured and unstructured elements 

in the EHR. Structured elements usually include demographic information, billing 

codes, laboratory tests, vital signs and medications. Unstructured elements include 

clinical notes, family history, radiology reports, pathology reports and others. 

Utilization of unstructured data elements usually require additional processing by 

natural language processing. So far, the most commonly used structured data are 

the billing codes – especially the ICD and CPT codes because of their ubiquity in 

the EHR. [122] With the increasing use of clinical terminologies such as 

SNOMED CT, LOINC and RxNorm as a result of incentive programs such as  

Meaningful Use and its successor Promoting Interoperability in the U.S., [41, 43] 

it is expected that the inclusion of these terminologies in phenotype definitions 

will increase. This should have a positive impact in the accuracy of phenotyping 

as clinical terminologies such as SNOMED CT have been shown to provide better 

coverage and more fine-grained representation of clinical information. [123-125] 

The use of standardized terminologies in the EHR will be a great boon towards 

making phenotype definitions fully computable and portable across data sources. 

[126] The use of robust terminologies can also make phenotype authoring more 

efficient. For example, the tools developed by the Informatics for Integrating 

Biology and the Bedside (i2b2) project leverage the intrinsic hierarchical structure 

of medical ontologies to allow the selection of all descendants under the same 
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concept. [127]  Before standardized terminologies become the norm, the diversity 

in content terminologies remains a challenge to electronic phenotyping.  

 

Development of phenotype definitions is a time- and resource-intensive activity. 

Often knowledge engineers, domain experts and researchers have to spend many 

hours to create and iteratively refine phenotype algorithms to achieve high 

sensitivity, specificity, positive and negative predictive values. It is highly likely 

that different research groups have the need to identify the same common 

conditions, such as type 2 diabetes mellitus. To ensure comparability of results 

and to avoid duplication of effort, it is important that phenotype definitions are 

validated and shared across institutional and organizational boundaries. One 

platform for the creation, validation and dissemination of phenotype definitions is 

the Phenotype Knowledgebase (PheKB) developed by the eMERGE Network. 

[122] PheKB has built-in tools specifically designed to enhance knowledge 

sharing and collaboration, so as to facilitate the transportability of phenotype 

definitions across different health care systems, clinical data repositories and 

research applications. 

 

Phenotype definitions often include enumerated lists of concepts that identify the 

pertinent characteristics of a patient population. These lists are conventionally 

called value sets, which are lists of codes from standard terminologies for 

diagnosis, procedures, laboratory tests, medications etc. Value sets developed for 

phenotype definitions are very similar to value sets developed for other purposes, 

such as clinical quality measurement. Quality measure value sets are used to 

identify sub-populations of patients sharing certain demographic and clinical 

characteristics, as defined by a clinical quality measure. In the U.S., the Electronic 

Clinical Quality Improvement (eCQI) initiative requires health care systems to 

submit data electronically for selected clinical quality measures. [128]. In part as 

response to this initiative, NLM established the Value Set Authority Center 

(VSAC), which is a purpose-built platform to support the authoring, maintenance 

and dissemination of value sets which can be used for quality measurement, 

phenotype definition and other purposes. [129] 
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The Way Forward  
Looking forward, it is encouraging that the value of ontologies in clinical research 

becomes more recognized. This is evidenced by the increase in the number of 

investigations making use of ontologies. At the same time, this is also 

accompanied by an increase in the number of ontologies, which is a mixed 

blessing. Many researchers still tend to create their own ontologies to suit their 

specific use case. Re-use of existing ontologies is only a rarity. If left unchecked, 

this tendency has the potential of growing into the very problem that ontologies 

are created to solve – the multitude of ontologies will itself become the barrier to 

data interoperability and integration. Post hoc mapping and alignment of 

ontologies is often difficult (if not impossible) and an approximation at best (with 

inherent information loss). The solution is to coordinate the development and 

maximize the re-use of existing ontologies, which will significantly simplify 

things downstream. 

 

To facilitate re-use of ontologies, resources like the UMLS and BioPortal are 

indispensable. They enable users to navigate the expanding sea of biomedical 

ontologies. In addition to listing and making these ontologies available, what is 

still lacking is a better characterization of these ontologies to help users decide 

whether they are suitable for the tasks at hand. In case there are multiple candidate 

ontologies, some indicators of quality (e.g., user base, applicable use cases, update 

frequency, user feedback and comments) will be very useful to help users decide 

on the best choice. 
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