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ABSTRACT

Objective: SNOMED CT is the largest clinical terminology worldwide. Quality assurance of SNOMED CT is of

utmost importance to ensure that it provides accurate domain knowledge to various SNOMED CT-based appli-

cations. In this work, we introduce a deep learning-based approach to uncover missing is-a relations in

SNOMED CT.

Materials and Methods: Our focus is to identify missing is-a relations between concept-pairs exhibiting a con-

tainment pattern (ie, the set of words of one concept being a proper subset of that of the other concept). We use

hierarchically related containment concept-pairs as positive instances and hierarchically unrelated containment

concept-pairs as negative instances to train a model predicting whether an is-a relation exists between 2 con-

cepts with containment pattern. The model is a binary classifier leveraging concept name features, hierarchical

features, enriched lexical attribute features, and logical definition features. We introduce a cross-validation

inspired approach to identify missing is-a relations among all hierarchically unrelated containment concept-

pairs.

Results: We trained and applied our model on the Clinical finding subhierarchy of SNOMED CT (September

2019 US edition). Our model (based on the validation sets) achieved a precision of 0.8164, recall of 0.8397, and

F1 score of 0.8279. Applying the model to predict actual missing is-a relations, we obtained a total of 1661

potential candidates. Domain experts performed evaluation on randomly selected 230 samples and verified

that 192 (83.48%) are valid.

Conclusions: The results showed that our deep learning approach is effective in uncovering missing is-a rela-

tions between containment concept-pairs in SNOMED CT.
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INTRODUCTION

Biomedical ontologies or terminologies like SNOMED CT are

widely used in biomedical research. They provide controlled

vocabularies for annotating biomedical data, facilitating access to

information, and supporting semantic interoperability.1

Quality assurance of biomedical ontologies is a vital aspect of
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ontology management to ensure accurate representation of domain

knowledge. However, this can be an arduous task due to the large

size and complexity of ontologies making manual auditing unsus-

tainable.2 Therefore, automated approaches have been widely inves-

tigated to perform terminology quality assurance.

In this article, we introduce such an automated approach based

on deep learning to identify missing is-a relations between contain-

ment concept-pairs in SNOMED CT. Leveraging hierarchically

related and unrelated containment concept-pairs, we train a model

to predict whether there is an is-a relation between a pair of con-

cepts exhibiting a containment lexical pattern. The trained model is

used to predict missing is-a relations among hierarchically unrelated

containment concept-pairs. Randomly selected missing is-a predic-

tions are evaluated by domain experts to confirm their validity.

BACKGROUND AND SIGNIFICANCE

SNOMED CT
SNOMED CT is the world’s largest, most comprehensive clinical

terminology with scientifically validated clinical content.3–5 The

September 2019 US edition of SNOMED CT contains over 350 000

concepts. SNOMED CT concepts are organized in 19 top-level sub-

hierarchies including Clinical finding, Procedure, and Body struc-

ture. Each concept has a unique identifier, a fully specified name, a

preferred name, synonyms, and definitional relations with other

concepts.6

Quality assurance of SNOMED CT
Automated and semi-automated methods have been proposed for

quality assurance or auditing of biomedical terminologies including

SNOMED CT.7 For example, summarization graphs called abstrac-

tion networks indicating various errors have been used to audit

SNOMED CT.8–11 Bodenreider introduced a method to identify

missing is-a relations by comparing the SNOMED CT hierarchy

against a hierarchy generated through reasoning on logical defini-

tions derived from lexical features of concept labels.12 Agrawal

et al13 leveraged lexical and structural indicators to detect inconsis-

tent modeling among similar concepts. In previous work, we investi-

gated lexical patterns in nonlattice subgraphs to identify missing is-a

relations and missing concepts in SNOMED CT.2 We then studied

using enriched lexical attributes of concepts to uncover is-a inconsis-

tencies in SNOMED CT.14,15 All the above-mentioned methods are

rule-based.

Recently, a few studies have leveraged machine learning techni-

ques for auditing SNOMED CT. In one study, we explored 3 deep

learning models to predict proper names of SNOMED CT concepts

complying with the terminology’s naming convention.16 Other

works have leveraged deep learning to place new concepts in the

SNOMED CT hierarchy given that the new concept’s name is

known.17–19 We also investigated whether deep learning could aid

in automatically validating the suggested missing is-a relations in

SNOMED CT obtained by nonlattice-based auditing approaches.20

To the best of our knowledge, no other work has used deep learning

techniques to detect actual missing is-a relations in SNOMED CT.

Although Liu et al21 have investigated a convolutional neural net-

work (CNN) model to predict missing is-a relations in the National

Cancer Institute thesaurus (NCIt), the results were not yet strong

enough when their trained model was used to detect actual missing

is-a relations (only 1 out of 20 random suggestions were valid).

We hypothesize that deep learning approaches can be utilized to

effectively detect missing is-a relations in biomedical terminologies

such as SNOMED CT.

Specific contribution
The specific contribution of this work is to combine concepts’ name

features, hierarchical features, ancestor-related lexical features, and

logical definition features, and train a deep learning model to auto-

matically identify missing is-a relations between concept-pairs with

a containment pattern in SNOMED CT. A pair of concepts (or

concept-pair) is said to have a containment pattern if the set of

words of one concept’s name is a proper subset of that of the other

concept’s name (eg, concept Chronic osteomyelitis and concept

Chronic osteomyelitis of right ankle). Due to the discovery nature of

identifying missing is-a relations for quality assurance, it is impor-

tant to assess the model’s ability to uncover valid missing is-a rela-

tions. Therefore, manual evaluation by domain experts is performed

on the missing is-a relations predicted by our model. Notably, this

learning-based approach identifies missing is-a relations that were

not discovered by previous rule-based approaches. To the best of

our knowledge, this is the first work on automated identification of

missing is-a relations in SNOMED CT using deep learning techni-

ques.

MATERIALS AND METHODS

In this work, we focus on identifying missing is-a relations in the

Clinical finding subhierarchy, the largest subhierarchy of SNOMED

CT (September 2019 US edition). More specifically, we focus on

relations between concepts exhibiting a containment pattern,

because this pattern is often indicative of hierarchical relations. We

used hierarchically related containment concept-pairs as positive

instances and hierarchically unrelated containment concept-pairs as

negative instances to train a deep learning model predicting whether

there is an is-a relation between 2 concepts with containment pat-

tern. This model combines 4 kinds of concept features: concept

name features, hierarchical features, enriched lexical attribute fea-

tures, and logical definition features. Since our goal is to identify

missing is-a relations, we applied the trained model to identify such

relations from hierarchically unrelated containment concept-pairs.

Containment concept-pair generation
Hierarchically unrelated concept-pairs exhibiting a containment pat-

tern may represent missing is-a relations.2 In other words, given 2

hierarchically unrelated concepts C1 and C2, if the set of words of

C1 is a proper subset of that of C2, then there might be a missing is-a

relation between C2 and C1 (ie, C2 is-a C1). Therefore, we targeted

such unrelated containment concept-pairs to identify missing is-a

relations.

In subsequent text, for a pair of concepts with containment pat-

tern, we refer to the concept whose set of words subsumes that of

the other as the container concept, and the other as the containee

concept. For example, for concept Open fracture of metaphysis of

first metatarsal bone (disorder) and concept Open fracture of meta-

physis of metatarsal bone (disorder), we refer to the former as the

container concept and the latter as the containee concept.

To train a model for is-a prediction, we generated both hierarchi-

cally related concept-pairs with containment pattern (considered as

positive instances) and unrelated concept-pairs with containment

pattern (considered as negative instances). For example, concept

Open fracture of metaphysis of first metatarsal bone (disorder) and
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concept Open fracture of metaphysis of metatarsal bone (disorder)

are hierarchically related (ie, having an is-a relation) and considered

as a positive instance; while concept Acute gastric ulcer with hemor-

rhage but without obstruction (disorder) and concept Acute gastric

ulcer with obstruction are hierarchically unrelated and considered as

a negative instance.

There were 10 820 unrelated concept-pairs and 24 407 hierarchi-

cally related concept-pairs with containment pattern in the Clinical

finding subhierarchy of SNOMED CT. However, in a particular sit-

uation where the container concept’s name includes “and,” “or,” or

“and/or,” it is highly likely that the containment concept-pair would

not suggest a valid missing is-a relation. For example, since the set

of words of concept Contusion of neck (disorder) is a proper subset

of that of concept Contusion of head and/or neck (disorder), the

containment concept-pair heuristic would wrongly suggest Contu-

sion of head and/or neck (disorder) is a subtype of Contusion of

neck (disorder), while the valid case is that Contusion of neck (disor-

der) is a subtype of Contusion of head and/or neck (disorder). There-

fore, we disregard those cases except in the following 2 scenarios:

1. if the containee concept also includes “and,” “or,” or “and/or,”

and the containee concept has the same number of f“and,” “or,”

“and/or”g words as the container concept, for example, containee

Carcinoma liver and/or biliary system (disorder) and container

Carcinoma in situ of liver and/or biliary system (disorder);

2. if the containee concept appears as a substring of the container

concept, and the word immediately following the substring is not

any of f“and,” “or,” “and/or”g, for example, containee Neuro-

pathic ulcer (disorder) and container Neuropathic ulcer of mid-

foot AND/OR heel due to type 2 diabetes mellitus (disorder).

Disregarding such cases resulted in a total of 8804 unrelated con-

tainment concept-pairs that were used as negative instances. A ran-

domly selected 8804 related containment concept-pairs were used as

positive instances. Therefore, our dataset included 17 608 instances

of containment concept-pairs.

Concept feature representation
We leverage several features of SNOMED CT concepts in our

model, including lexical features (ie, concept name), structural fea-

tures (hierarchical relations), and logical features (logical defini-

tions). While all features are extracted from the concept under

investigation, lexical features can also be extracted from its ances-

tors (see Enriched lexical attribute features).

Concept name features

The Fully Specified Name (FSN) of a concept in SNOMED CT is a

unique description that encodes the meaning of the concept in an

unambiguous manner.22 To use FSNs as features in our model, we

vectorized them by training a Doc2vec embedding model using Gen-

sim Python library.23 Doc2Vec is an unsupervised framework that

learns fixed-length feature representations from variable-length

pieces of text.24 We set the size of the embeddings of FSNs to 100

and window size to 5, and trained using the distributed bag-of-

words model of Doc2vec.

Hierarchical features

The hierarchical is-a or subsumption relationship is formed between

2 concepts such that one concept (child) is a subtype of the

other (parent). In this work, we leveraged a Graph Convolutional

Network (GCN) to automatically learn hierarchical features of a

concept. GCN learns structural features for each graph node by per-

forming neighborhood aggregation.25,26

To learn hierarchical features of a concept with GCNs, we

extracted an ancestor subgraph containing parents and grandparents

of the concept and their relations. We generated ancestor subgraphs

for concepts in both positive and negative instances. Figures 1 and

2A show the ancestor subgraphs obtained for a positive instance

with container concept Open fracture of metaphysis of first metatar-

sal bone (disorder) and containee concept Open fracture of meta-

physis of metatarsal bone (disorder), respectively. Figures 3 and 4A

display the ancestor subgraphs obtained for a negative instance with

container concept Acute gastric ulcer with hemorrhage but without

obstruction (disorder) and containee concept Acute gastric ulcer

with obstruction (disorder), respectively.

In a positive instance, the ancestor subgraph of the container con-

cept includes the containee concept and its parent(s), and there is an

is-a link between the container concept and the containee concept;

while in a negative instance, the ancestor subgraph of the container

concept may not include the containee concept and its parent(s), and

there is no is-a link between the container concept and the containee

concept. To make the container concept’s subgraphs include similar

information for positive and negative instances, we performed the fol-

lowing modifications. For positive instances, we modified the ances-

tor subgraph of the container concept by removing the is-a relation

between the container and containee as shown in Figure 2B. For nega-

tive instances, we added the containee concept and its parent(s) to the

ancestor subgraph of the container concept as displayed in Figure 4B.

These steps were necessary to ensure that positive and negative instan-

ces have the same link existence information and the model will not

optimize on this part of information to classify.

Note that in some positive instances, the container does not have

any additional is-a relations other than the one between the con-

tainer and the containee. In such instances, removing the is-a rela-

tion between the 2 would produce an ancestor subgraph without

any ancestors leading to no hierarchical features being learned. We

did not consider such instances for training.

Enriched lexical attribute features

We previously showed that enriched lexical attributes of concepts are

helpful for identifying missing is-a relations.14,15,27 Given a concept,

such attributes are obtained from leveraging words and noun phrases

in the FSNs of the concept and its ancestors. To vectorize these attrib-

utes, we first constructed documents for each concept by creating a

sentence from each attribute of the concept preceded by the words

“has attribute.” Then we trained a distributed bag-of-words Doc2vec

model with such documents created for all the concepts. We set the

size of embeddings in this step to 200 and window size to 3.

Logical definition features

In SNOMED CT, logical definitions provide a structured representa-

tion for concepts based on their clinical meanings, descriptions, and

how they are related to other concepts.28,29 For instance, Figure 5

shows the logical definition of the concept Aneurysm of conjunctiva

(disorder). With such information, SNOMED CT can be considered

as a knowledge graph with a collection of facts in the form of triples

consisting of a head, a relation, and a tail.30 We used a knowledge

graph embedding scheme called TransE to generate vector representa-

tions for the elements of the knowledge graph.31,32 We set the size of

Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 3 477



embeddings to 400 and learning rate to 0.001, and used 400 negative

instances per positive instance to train the TransE model.

Architecture of the model
Figure 6 illustrates the architecture of our model. It consists of 2

GCN layers that separately learn hierarchical features for container

and containee concepts (both layers share the same weights), fol-

lowed by 3 fully connected (FC) layers that perform the classifica-

tion. The final FC layer uses a sigmoid activation function, and

other layers use ReLU activation functions. The output of the model

is the probability of the concept-pair having an is-a relation. Batch

normalization is also performed and dropouts are used after the first

2 FC layers so that the model does not overfit the data. Table 1 sum-

marizes the hyperparameters used for our model. We used the

default values for embedding size and window size in Gensim Doc2-

vec for concept name feature embeddings. Since the documents cre-

ated for enriched lexical attributes are usually much larger than

concept names, we increased the embedding size of these to 200.

Since a majority of sentences in these documents are 3-word senten-

ces, we set the window size to 3. The network layer sizes, dropouts,

learning rate, and batch size were selected through manual hyper-

parameter tuning.

Given a concept-pair instance, the nodes in the ancestor sub-

graphs of both container and containee concepts are assigned with

Doc2vec embeddings of the FSNs of the relevant concepts as their

initial features. Then, both ancestor subgraphs are passed through

the corresponding GCN layers so that hierarchical features can be

learned. Next the learned hierarchical features of container and con-

tainee concepts are multiplied with each other. Similarly, the con-

cept name features, enriched lexical attribute features, and logical

definition features of container and containee concepts are multi-

plied, respectively. Then the resulting vectors of these multiplica-

tions are concatenated and forwarded through FC layers to perform

the classification.

Figure 1. Ancestor subgraph of concept Open fracture of metaphysis of metatarsal bone (disorder).

Figure 2. (A) Ancestor subgraph of a positive instance’s container concept Open fracture of metaphysis of first metatarsal bone (disorder). (B) Modified ancestor

subgraph with the link between the container concept and the containee concept Open fracture of metaphysis of metatarsal bone (disorder) removed.
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Model implementation
We implemented our model with PyTorch using the Graph Neural

Network package in the Deep Graph Library.33 We used Binary

Cross Entropy as the loss function and Adamax as the optimizer. A

learning rate of 0.0001 and a batch size of 512 was used. The train-

ing was performed for 20 epochs. The model was trained on an

NVIDIA GeForce RTX 2080 Ti graphics card.

A cross-validation approach for predicting missing is-a

relations
As mentioned earlier, hierarchically unrelated containment

concept-pairs not only serve as negative instances to train our

model, but also the candidates of potentially missing is-a rela-

tions. To identify missing is-a relations from the entire set of

8804 unrelated containment concept-pairs, we introduce an

approach derived from cross-validation. More specifically, we use

a subset of these instances to train the model while leaving the

rest to identify missing is-a relations. We randomly divided nega-

tive instances to 10-folds (N1, N2, N3, . . ., N10) and positive

instances into 10-folds (P1, P2, P3, . . ., P10) respectively. In each

training round, 8 negative folds together with 8 positive folds

were used for training, while a single negative fold and a single

positive fold were used for validation. After training, the trained

model was applied to the remaining negative fold to predict miss-

ing is-a relations. For example, in the first round, we may use

N3, N4, N5, N6, N7, N8, N9, N10, P3, P4, P5, P6, P7, P8, P9, and

P10 folds for training, N2 and P2 for validation, and N1 for pre-

dicting missing is-a relations. Note that concept-pairs are not

shared between training, validation, and prediction sets in any

round. This approach would allow us to identify missing is-a rela-

tions among the entire 8804 unrelated concept-pairs with a con-

tainment pattern.

Figure 3. Ancestor subgraph of a negative instance’s containee concept Acute gastric ulcer with obstruction (disorder).

Figure 4. (A) Ancestor subgraph of a negative instance’s container concept Acute gastric ulcer with hemorrhage but without obstruction (disorder). (B) Modified

ancestor subgraph with containee concept Acute gastric ulcer with obstruction (disorder) and its parent(s) added.
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Figure 5. The logical definition of the concept Aneurysm of conjunctiva (disorder). The “Finding site” and “Associated morphology” relationships in this logical

definition form an attribute group.35

Figure 6. The architecture of our model. The 2 GCN layers share the same weights.
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Ablation studies
Ablation studies were performed to investigate the respective effec-

tiveness and utility of each of the 4 input features used in our model:

hierarchical features (H), concept name features (CN), enriched

lexical attribute features (ELA), and concept logical definition fea-

tures (CD). In each ablation study, we removed one type of input

features and performed the cross-validation approach on the train-

ing and validation folds.

Evaluation
To evaluate our model’s performance in uncovering actual missing

is-a relations in the Clinical finding subhierarchy of SNOMED CT,

we selected a random collection of predicted missing is-a samples

for expert review and verification. Two domain experts (authors

EVB and JS) independently performed the evaluation and provided

comments. We considered a sample as a valid missing is-a relation

only if both experts agreed.

As it is labor-intensive for domain experts to manually discover

missing is-a relations from a large collection of unrelated contain-

ment concept-pairs, it is infeasible to create a gold standard that can

be used to comprehensively assess the precision, recall, and F1 score

of the model. Therefore, we only evaluated whether the randomly

chosen samples predicted by the model were valid missing is-a rela-

tions, that is, only the precision was assessed. And it is worth noting

that given the discovery nature of missing is-a identification, any

valid is-a relations uncovered are useful.

For the remaining unrelated containment concept-pairs that

were not predicted by our model as potentially missing is-a relations,

some of them may still be valid missing is-a relations. Therefore, we

randomly picked another collection of them for experts’ further

evaluation.

RESULTS

Ablation studies
The average precision, recall, and F1 score of each ablation experi-

ment can be found in Table 2.

It can be seen that the H þ CN þ ELA þ CD model achieved the

best F1 score, while H þ CN þ CD had the best precision and H þ
CN þ ELA model had the best recall. Comparing F1 scores, it is evi-

dent that the introduction of hierarchical features improves the

model performance considerably.

Missing is-a relation identification
Using the best performing model in terms of F1 score (H þ CNþ
ELA þ CD model), a total of 1661 potentially missing is-a relations

were identified in the Clinical finding subhierarchy. Table 3 presents

10 valid missing is-a relations identified by our model. For instance,

Residual interatrial communication following procedure (disorder)

is a valid subtype of Residual interatrial communication (disorder).

Evaluation
Out of 1661 potentially missing is-a relations predicted by our

model, we randomly selected 230 samples for evaluation (see Sup-

plementary Appendix SI). One domain expert (EVB) confirmed that

199 cases are valid missing is-a relations, while the other domain

expert (JS) confirmed 208 cases are valid. The 2 domain experts

agreed on 192 cases out of 230 as valid, indicating a precision of

83.48% achieved by our model. In addition, both experts agreed on

15 cases as invalid missing is-a relations. This means that the 2

experts agreed on a total of 207 (90%) out of 230 cases that they

evaluated. The prevalence-adjusted bias-adjusted kappa (PABAK)

coefficient for the inter-rater agreement was 0.8.34 Additionally, the

PABAK between the model and expert EVB was 0.7304, and the

PABAK between the model and expert JS was 0.8087. Thus, the

model differed from the experts approximately as much as the

experts differed from each other.

As for the remaining 7143 ones that were not predicted by our

model as potentially missing is-a relations, we randomly picked 50

samples from them for further evaluation (see Supplementary

Appendix SII). The 2 experts agreed on 24 samples as valid missing

is-a relations (a precision of 48%).

DISCUSSION

Model performance
It is worth noting that domain expert evaluation showed a slightly

higher precision (83.48%) than the best model in ablation studies

(81.64%). This is because the potentially missing is-a relations iden-

tified in this work originate from hierarchically unrelated contain-

ment concept-pairs, which were also leveraged as negative instances

during the training process. Our assumption was that a minority of

these cases would be valid missing is-a relations (ie, they are actually

positive instances) and hence using them as negative instances dur-

ing training would not have a major impact on the model. However,

existence of such valid missing is-a cases in the validation set would

result in reduced performance metrics (Table 2) than the actual per-

formance. For instance, even if the model correctly identifies a valid

missing is-a case in the validation set (ie, true positive), since it is a

negative instance in the validation set, it is counted as a false positive

Table 1. Model hyperparameters

Parameter Value

Doc2vec vector size (concept names) 100

Doc2vec vector size (enriched lexical attributes) 200

Knowledge graph embedding vector size 400

GCN layer size 1700

Fully connected layer 1 (FC1) size 1000

Fully connected layer 2 (FC2) size 32

Fully connected layer 3 (FC3) size 1

Activation for FC1 and FC2 ReLU

Activation for FC3 Sigmoid

Dropouts for FC1 and FC2 0.6

Optimizer Adamax

Learning rate 0.0001

Loss function Binary cross entropy

Batch size 512

Epochs 20

Table 2. Ablation study

Model Average precision Average recall Average F1 score

CNþELAþCD 0.7597 0.8133 0.7855

HþCNþCD 0.8339 0.7973 0.815

HþCNþELA 0.7678 0.8789 0.8196

HþELAþCD 0.7964 0.846 0.8204

HþCNþELAþCD 0.8164 0.8397 0.8279

H: hierarchical features; CN: concept name features; ELA: enriched lexical

attribute features; CD: concept logical definition features. The best perform-

ance is marked in bold.
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and hence the reported precision of the model is lowered. Neverthe-

less, this only affects the performance scores for ablation studies.

The manual evaluation is unaffected as it is performed by domain

experts on a random collection of missing is-a relations.

Out of 8804 hierarchically unrelated concept-pairs with contain-

ment pattern, our deep learning-based approach suggested 1661

potentially missing is-a relations with a precision of 83.48% based

on the expert evaluation of 230 samples. For the remaining 7143

ones, expert evaluation of 50 samples revealed a precision of 48%.

This indicates that our deep learning-based approach built on top of

the simple containment baseline is able to more precisely identify

missing is-a relations compared to using the simple containment

baseline alone. However, it also shows that the deep learning-based

approach misses some valid cases of is-a relations (ie, lower recall

compared with the simple baseline as expected).

Supporting evidence from SNOMED CT evolution
In this work, we used the September 2019 US edition of SNOMED

CT, after which several new editions have been released. Such termi-

nology evolution enables us to find additional supporting evidence

of potentially missing is-a relations identified by our model. Out of

1661 missing is-a relations predicted by our model, 513 have

already been fixed in the September 2022 US edition of SNOMED

CT. For instance, our model predicted Acute bronchitis caused by

chemical fumes (disorder) should be a subtype of Acute chemical

bronchitis (disorder), and this has been reflected in the newer

edition.

In addition, at least one of the concepts in 150 missing is-a pre-

dictions have been removed in the newer edition. For example, our

model predicted that Inflammatory hereditary disorder (disorder)

should be a subtype of Inflammatory disorder (disorder). However,

Inflammatory hereditary disorder (disorder) is no longer an active

concept in the newer edition.

Distinction with related work
In Liu et al’s21 work using CNNs to predict missing is-a relations in

the Neoplasm subhierarchy of NCIt, it was concluded that the

model performance was not yet sufficient for detecting missing is-a

relations. In comparison, our model achieved much better perform-

ance and was applied to a different and larger terminology:

SNOMED CT.

The containment lexical pattern was originally introduced in our

previous work where we considered only hierarchically unrelated

concept-pairs within lower and upper bounds of nonlattice sub-

graphs in SNOMED CT.2 In contrast, our deep learning-based

model is able to explore all the hierarchically unrelated containment

concept-pairs. Out of 1606 potentially missing is-a relations identi-

fied in this work, 1208 (75%) were not captured in the upper/lower

bounds of nonlattice subgraphs.

Examples of false positive cases
Although the model predicted valid cases of missing is-a among con-

tainment concept-pairs, there were a few cases of invalid suggestions

made by the model. For instance, the model predicted that Acute

gastric ulcer with hemorrhage but without obstruction (disorder)

should be a subtype of Acute gastric ulcer with obstruction (disor-

der). This is invalid as the former concept is regarding “without

obstruction” while the latter is “with obstruction.” Similarly, our

model predicted that Single coronary artery fistula (disorder) should

be a subtype of Single coronary artery (disorder). This is invalid as

coronary artery fistula and coronary artery are distinct entities.

Limitations and future work
As mentioned earlier, some of the negative instances in the training

data could be valid missing is-a relations, posing a unique challenge

for learning-based quality assurance approaches like this work. It

would be interesting to explore whether manual curation of a subset

of the negative training data by removing valid is-a relations would

affect the model performance. In addition, we balanced our dataset

by down-sampling the positive samples. A future direction is to per-

form resampling with different ratios of positive to negative samples

and find out which ratio provides optimum performance for this

particular task of identifying missing is-a relations.

In this work, we have focused on investigating concept-pairs

with containment pattern. A more challenging task for future work

is to predict missing is-a relations among any concept-pair without

restricting to containment pattern. The major hurdle is how to select

negative instances. Using full set of unconnected pairs would yield a

Table 3. Ten examples of valid missing is-a relations that were identified by our model and confirmed by domain experts

Subtype concept Supertype concept

735579001: Residual interatrial communication following procedure

(disorder)

449351005: Residual interatrial communication (disorder)

2978006: Aneurysm of conjunctiva (disorder) 432119003: Aneurysm (disorder)

92542002: Carcinoma in situ of ascending colon (disorder) 269533000: Carcinoma of colon (disorder)

86731008: Multiple open fractures of pelvis with disruption of pelvic

circle (disorder)

263222005: Multiple pelvic fractures (disorder)

1088171000119103: Recurrent acute serous otitis media of left middle

ear (disorder)

194287004: Recurrent acute otitis media (disorder)

724590008: Benign osteogenic neoplasm of articular cartilage of clavicle

(disorder)

92061008: Benign neoplasm of clavicle (disorder)

26171000119109: Pyogenic bacterial arthritis of wrist (disorder) 24761000119107: Pyogenic bacterial arthritis (disorder)

232069006: Retinal pigment epithelial detachment with tear of retinal

pigment epithelium (disorder)

95690009: Retinal tear (disorder)

403496009: Discoid lupus erythematosus of genital mucous membranes

(disorder)

403494007: Discoid lupus erythematosus of mucous membranes (disorder)

402270001: Irritant contact dermatitis of hands caused by friction

(disorder)

735758003: Irritant contact dermatitis caused by friction (disorder)

482 Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 3



heavily imbalanced training dataset. Random generation of concept-

pairs as negative instances may not be effective, since this may lead

to distant concept-pairs in the terminology, while missing is-a rela-

tions are observed among close concepts.

Additionally, our approach was only applied to the largest sub-

hierarchy of SNOMED CT (Clinical finding). A major challenge in

applying this approach to other subhierarchies is the smaller number

of training instances available. In the future, we will explore the

effectiveness of predicting missing is-a relations in a subhierarchy

using a model trained with instances from some other subhierar-

chies. We also plan to apply our approach to other biomedical ter-

minologies such as NCIt.

For the valid missing is-a relations identified in this work, we

will submit them to SNOMED International for consideration of

incorporation into a new release of the SNOMED CT.

CONCLUSION

In this article, we introduced a deep learning approach to predict

missing is-a relations among hierarchically unrelated concept-pairs

that exhibit a containment lexical pattern. This approach identified

1661 potentially missing is-a relations in the Clinical finding sub-

hierarchy of SNOMED CT (September 2019 US edition). Domain

experts’ evaluation of 230 random samples showed the effectiveness

of this approach (a precision of 83.48%). Additional supporting evi-

dence showed that 513 potentially missing is-a relations predicted

by our approach have been reflected in the newer edition.
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