

#### TRANSLATIONAL UMLS VOCABULARY ALIGNMENT

By: Bernal Jimenez

### MOTIVATION

- UMLS is a medical knowledge base which combines over 200 medical terminologies.
  - Valuable repository for medical knowledge and useful resource for inter-operability
- UMLS contains
  - ~4 million concepts
  - $\sim$  16 million atoms (1 atom = 1 string from a specific source)
- UMLS grows larger every year
  - Approx. a million atoms are added every year

### MOTIVATION

•UMLS editors integrate new atoms into UMLS

- Every new atom needs to be associated with atoms already in UMLS.
- Task is called UMLS Vocabulary Alignment or UVA
- The task can range from very simple to extremely challenging and often requires in-depth domain knowledge.

Simple Examples:

- "ascorbic acid" => "vitamin C"
- "lung cancer" => "pulmonary carcinoma"
- Complex Example:
  - "SPRL1B" => "LCE2B gene"

#### MOTIVATION

- Given that there are  $\sim 10^{10}$  atom comparisons to be done for each new batch of terms, updating UMLS can become extremely expensive.
  - A medium sized team is unable to keep up with the task by itself.
- Currently, UMLS editors rely on rule-based tools.
  - Thus, our team has been exploring deep learning methods to alleviate the burden on UMLS editors and improve UMLS quality.

#### **PREVIOUS WORK**

- Our lab's previous UVA work is formulated as a task where every possible pair would need to be classified.
- Due to the massive size of this task (10<sup>10</sup> 10<sup>14</sup> pairs), current work is done on idealized (but still large-scale) subsets (10<sup>8</sup> pairs).
  - 166 million negative edges when there are 10<sup>10</sup> possible negative edges.

#### **CURRENT TEST DATASET**





#### **PREVIOUS WORK**

- Current datasets use a prevalence which is 10<sup>6</sup> times lower than real world datasets
  - Prevalence: % of positive samples in dataset
- This prevalence gap means that even models which perform well in current datasets would likely yield poor results in the real-world scenario.
  - Many negative edges would be incorrectly predicted as positive.

**Main Goal:** Build a system which can be directly deployed to support UMLS editors for UMLS construction and updating.

- 1. Define **task** and **datasets** which faithfully represent the real-world task.
- 2. Design a **baseline system** that can address the task and dataset designed.
- 3. Perform quantitative and qualitative evaluation of baseline system.

#### **Research Aims:**

- 1. Define **task** and **datasets** which faithfully represent the real-world task.
  - Task Definition: For each new atom to be introduced to UMLS, find all synonymous atoms in the current UMLS. (analogous to real-world task)

#### Evaluation Dataset:

- 430k new atoms were introduced between the first and second version of (2020AA vs 2020AB).
- For each of these 430k new atoms in 2020AB, we are looking to determine which atoms are likely to be its synonyms in UMLS 2020AA.
- 2. Design a **baseline system** that can address the task and dataset designed.
- 3. Perform quantitative and qualitative evaluation of baseline system.

- 1. Define task and datasets which faithfully represent the real-world task.
- 2. Design a **baseline system** that can address the task and dataset designed.
  - Two-step system:
    - High recall candidate generation (fast but misses few potential synonyms)
    - High precision synonymy classification (slower but more discriminative)
- 3. Perform quantitative and qualitative evaluation of baseline system.

- 1. Define task and datasets which faithfully represent the real-world task.
- 2. Design a **baseline system** that can address the task and dataset designed.
- 3. Perform quantitative and qualitative evaluation of baseline system.
  - Quantitative Evaluation
    - High Recall Step
      - Recall at K % of true synonyms that can be found within the first K atoms retrieved from the original UMLS.
    - High Precision Step
      - F1, Precision and Recall on true synonym pairs

- 1. Define task and datasets which faithfully represent the real-world task.
- 2. Design a **baseline system** that can address the task and dataset designed.
- 3. Perform quantitative and qualitative evaluation of baseline system.
  - Qualitative Evaluation
    - Sample output should be carefully examined by biomedical experts
    - UMLS has some ambiguities and errors, thorough analysis is required to ascertain the quality of the predictions compared to the "gold standard".

#### METHODOLOGY

High recall candidate generation (fast but gets many false positives)
High precision synonymy classification (slower but more discriminative)

#### METHODOLOGY

• High recall candidate generation (fast but gets many false positives)

• High precision synonymy classification (slower but more discriminative)

### HIGH RECALL STEP: FORMULATION

#### Task formulation:

- 430k query terms
- ~10 million term database
- Retrieve a limited # of candidates from the database for each query which hopefully contain relevant candidates.

#### Similar tasks:

- Information retrieval (IR) (finding relevant documents with respect to a query)
- Entity linking (finding relevant concepts with respect to a term mentioned in text)

#### HIGH RECALL STEP: FORMULATION

- Both IR and entity linking use modern textual encoders (often pre-trained language models) and a fast implementation of the k-nearest neighbors (k-NN) algorithm to achieve a fast and high recall candidate retrieval step.
- Spurred on by PLMs as well as k-NN speedups using GPUs (Johnson et al. 2017)

#### HIGH RECALL STEP: FORMULATION

- We model our high recall approach directly on biomedical entity linking:
  - In this task, a concept is mentioned within a sentence:
    - "The patient was diagnosed with <u>pulmonary carcinoma</u>."
  - We then link this mention to a UMLS entity which represents "pulmonary carcinoma".

#### HIGH RECALL STEP: BIOMEDICAL ENTITY LINKING



#### HIGH RECALL STEP: OUR APPROACH



#### HIGH RECALL STEP: ENCODERS

• Any system that produces a dense vector from text can be an encoder.

Examples:

- Current UVA models like LexLM, ConLM and UBERT.
- BioWordVec embeddings
- Pretrained language models (PLMs) like BERT, RoBERTa
- Biomedical PLMs (PubMedBERT)
- Biomedical PLMs with infused UMLS information (SAPBERT and KRISSBERT)
- (Liu et al. 2020, Zhu et al. 2020, Bhowmik et al. 2021, Zhang et al. 2022, Xu et al. 2022)

#### HIGH RECALL STEP: GPU K-NN SPEEDUP

- Benchmarking k-NN for LexLM on GPUs vs CPU
  - Database: 8,521,220 AUIs
  - Queries: 430,135 AUIs
  - Dimension: 50
- CPU Time: 3 hours (180 minutes)
- GPU Time: 3 minutes
- GPU offers around a 60 times speedup to the k-NN

| Model                   | R @ Source<br>Synonymy | R@1 | R@5 | R@10 | R@50 | R@100 | R@200 | R@500 | R@1000 | R@2000 |
|-------------------------|------------------------|-----|-----|------|------|-------|-------|-------|--------|--------|
| PubMedBERT              | -                      | 9%  | 16% | 18%  | 23%  | 25%   | 28%   | 31%   | 34%    | 37%    |
| LexLM                   | -                      | 10% | 22% | 28%  | 42%  | 47%   | 51%   | 56%   | 59%    | 62%    |
| KRISSBERT               |                        | 13% | 25% | 30%  | 43%  | 48%   | 53%   | 59%   | 64%    | 68%    |
| SAPBERT                 | -                      | 20% | 44% | 53%  | 71%  | 76%   | 81%   | 86%   | 88%    | 89%    |
|                         |                        |     |     |      |      |       |       |       |        |        |
| PubMedBERT (Source Syn) | 35%                    | 41% | 46% | 48%  | 52%  | 53%   | 55%   | 57%   | 59%    | 61%    |
| LexLM (Source Syn)      | 35%                    | 42% | 51% | 56%  | 66%  | 70%   | 73%   | 77%   | 79%    | 81%    |
| KRISSBERT (Source Syn)  | 35%                    | 43% | 51% | 55%  | 64%  | 68%   | 71%   | 76%   | 79%    | 82%    |
| SAPBERT (Source Syn)    | 35%                    | 46% | 63% | 70%  | 83%  | 86%   | 90%   | 93%   | 95%    | 95%    |

#### HIGH RECALL STEP: RESULTS

| Model                      | R @ Source<br>Synonymy | R@1 | R@5 | R@10 | R@50 | R@100 | R@200 | R@500 | R@1000 | R@2000 |
|----------------------------|------------------------|-----|-----|------|------|-------|-------|-------|--------|--------|
| PubMedBERT                 | -                      | 9%  | 16% | 18%  | 23%  | 25%   | 28%   | 31%   | 34%    | 37%    |
| LexLM                      | -                      | 10% | 22% | 28%  | 42%  | 47%   | 51%   | 56%   | 59%    | 62%    |
| KRISSBERT                  | -                      | 13% | 25% | 30%  | 43%  | 48%   | 53%   | 59%   | 64%    | 68%    |
| SAPBERT                    | -                      | 20% | 44% | 53%  | 71%  | 76%   | 81%   | 86%   | 88%    | 89%    |
| PubMedBERT (Source Syn)    | 35%                    | 41% | 46% | 48%  | 52%  | 53%   | 55%   | 57%   | 59%    | 61%    |
| LexLM (Source Syn)         | 35%                    | 42% | 51% | 56%  | 66%  | 70%   | 73%   | 77%   | 79%    | 81%    |
| KRISSBERT (Source Syn)     | 35%                    | 43% | 51% | 55%  | 64%  | 68%   | 71%   | 76%   | 79%    | 82%    |
| SAPBERT (Source Syn)       | 35%                    | 46% | 63% | 70%  | 83%  | 86%   | 90%   | 93%   | 95%    | 95%    |
| SAPBERT (Source Syn + LUI) | 58%                    | 25% | 60% | 71%  | 88%  | 91%   | 94%   | 96%   | 97%    | 98%    |

#### HIGH RECALL STEP: RESULTS

#### HIGH RECALL STEP: TAKEAWAYS

• **SAPBERT** is by far the most effective encoder.

- Leveraging basic lexical similarity and source synonymy greatly improves candidates obtained from only dense representations.
  - Throwing away rule-based signal is detrimental to performance.
- We achieve above 90% recall at above 100 candidates with the best system.
  - This is high enough for a useful real-world system to support UMLS editors (humans in the loop are still vital).

#### METHODOLOGY

High recall candidate generation system (fast but gets many false positives)
High precision synonymy classification (slower but more discriminative)

### HIGH PRECISION STEP: FORMULATION

- Output from first step:
  - $\sim$  100-200 (query term, candidate term) pairs for each query term
  - Imbalanced distribution: only 5-10% of these pairs are synonymous (much higher prevalence than natural one)
- Task formulation:
  - Same formulation used by previous UVA methods (LexLM, UBERT))
  - Binary synonymy classification for each (query term, candidate term) pair.
- Approach:
  - Given the success of PLM fine-tuning in a wide range of NLP tasks, we leverage PLMs.
  - To deal with the heavy class imbalance, we sample a balanced number of positive and negative pairs for training.

### HIGH PRECISION STEP: DATASETS

#### Dev and Test Datasets

- Top 100 SAPBERT candidates from the 430k new 2020AB term dataset.
- Set aside 1000 and 2000 concepts for dev and test sets, respectively.
- Use all 100 candidates for each concept to create dev and test sets
  - 100,000 dev set and 200,000 test set pairs
  - For this setting, we also add whatever synonyms are missing from the candidate list (not fully realistic but upper bound on performance)

### HIGH PRECISION STEP: DATASETS

#### Training Datasets

- Ideal Distribution
  - Rest of 2020AB new terms (Same semantic group distribution as dev and test set)
  - By using this training set, we are inadvertently introducing information about the new terms that we would not have in the real-world setting.
- Realistic Distribution
  - We separate 400k UMLS 2020AA terms as a different "new" dataset.
  - Find 100 k-NNs for each of these terms within what remains of 2020AA.
  - Create 40 million training dataset to sample balanced datasets from.

### HIGH PRECISION STEP: DATASETS

- Training Dataset Types
  - Balanced
  - Stratified
  - Dev Set Equivalent: 100 candidates for each query term (not shuffled)
- Training Dataset Sizes
  - 10k
  - 100k
  - 200k
  - 500k

## HIGH PRECISION STEP: MODELS

- Fine-tuned Models
  - PubMedBERT
- Baselines
  - UBERT (Original + SAPBERT)
  - LexLM
  - ConLM

## HIGH PRECISION STEP: RESULTS

|                                     | Training  | Training   | Training  | -         | <b>D</b> · · · | <b>D</b> II |
|-------------------------------------|-----------|------------|-----------|-----------|----------------|-------------|
| Model                               | Dataset   | Data Type  | Data Size | <b>F1</b> | Precision      | Recall      |
| SAPBERT + UBERT Synonymy Prediction | UVA Train | Stratified | 166 M     | 27.4%     | 16.3%          | 87.4%       |
| UBERT MLM + Synonymy Prediction     | UVA Train | Stratified | 166 M     | 35.0%     | 22.0%          | 85.0%       |
| PubMedBERT Fine Tuning              | ldeal     | Balanced   | 1 Ok      | 38.2%     | 24.6%          | 85.4%       |
| PubMedBERT Fine Tuning              | Ideal     | Stratified | 10k       | 40.6%     | 38.1%          | 43.3%       |
| PubMedBERT Fine Tuning              | Ideal     | Balanced   | 100k      | 46.7%     | 31.7%          | 88.8%       |
| PubMedBERT Fine Tuning              | ldeal     | Stratified | 100k      | 33.4%     | 49.1%          | 25.3%       |
|                                     |           | Dev Set    |           | 05.00/    |                | 17.00/      |
| PubMedBERT Fine Tuning              | ldeal     | Equivalent | 100k      | 25.9%     | 54.7%          | 17.0%       |

#### HIGH PRECISION STEP: TAKEAWAYS

- Both UBERT versions (which outperform other models in UVA work) underperform small-scale fine-tuning
  - Small (100k samples) but more realistic datasets yield better real-world performance than training on millions of synonym pairs.
- Training set distribution drastically affects performance
  - Balanced datasets (1:1) yield high recall but low precision
  - Stratified datasets (1:~10) yields higher precision but very low recall

### HIGH PRECISION STEP: RESULTS

|                        | Training  | Training  | Training  |       |           |        |
|------------------------|-----------|-----------|-----------|-------|-----------|--------|
| Model                  | Dataset   | Data Type | Data Size | F1    | Precision | Recall |
| PubMedBERT Fine Tuning | ldeal     | Balanced  | 100k      | 46.7% | 31.7%     | 88.8%  |
| •                      |           |           |           |       |           |        |
| PubMedBERT Fine Tuning | Realistic | Balanced  | 100k      | 41.5% | 27.3%     | 86.6%  |
| PubMedBERT Fine Tuning | ldeal     | Balanced  | 200k      | 42.8% | 32.0%     | 64.7%  |
| PubMedBERT Fine Tuning | Realistic | Balanced  | 200k      | 43.8% | 29.0%     | 90.2%  |
| PubMedBERT Fine Tuning | ldeal     | Balanced  | 500k      | 52.5% | 37.1%     | 90.0%  |
| PubMedBERT Fine Tuning | Realistic | Balanced  | 500k      | 37.1% | 23.1%     | 94.6%  |

#### HIGH PRECISION STEP: TAKEAWAYS

- Original distribution training datasets underperform ideal distribution training.
- The correlation between dataset size and performance is not as strong as expected.
- Training is quite noisy
  - Training metrics keeps increasing but dev set performance drops after epoch 1 in most cases
- $\$  Precision is only at  ${\sim}30{\text{-}}40\%$ , not high enough for deployable system
  - 2/3 of all predicted synonym pairs are not synonymous according to gold labels
  - Qualitative evaluation is necessary to determine how this model performs in practice

### QUALITATIVE EVALUATION: FALSE POSITIVES

- Low precision problem is due to the high number of false positives
- For every 1 synonym pair predicted correctly, 2 are incorrect according to UMLS
- Unfortunately, or fortunately, it is very difficult to determine whether each of these false positives is a true error or a UMLS error
  - The amount of time spent on each term would be very large (even for a person with some biomedical training)

# QUALITATIVE EVALUATION: FALSE POSITIVES

| Query                                                                                       | Candidate                                          | Label | Pred |
|---------------------------------------------------------------------------------------------|----------------------------------------------------|-------|------|
| arginine/serine-rich protein 1                                                              | SRA1                                               | 0     | 1    |
| ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F2<br>pseudogene 3         | ATP5MC3 gene                                       | 0     | 1    |
| SDYS                                                                                        | SDYS                                               | 0     | 1    |
| BENZALKONIUM CHLORIDE 1 mg in 1 g TOPICAL CLOTH [Antiseptic<br>Towel Benzalkonium Chloride] | Pro Pet Dental Wipes 0.1 % Medicated Pad           | 0     | 1    |
| transfer RNA tyrosine 1 (anticodon GUA)                                                     | TRT-AGT2-1 gene                                    | 0     | 1    |
| WW domain binding protein 1-like pseudogene 4                                               | WBP4 gene                                          | 0     | 1    |
| protirelin                                                                                  | Thyrotropin-releasing factor, prepro-              | 0     | 1    |
| sodium hyaluronate 23 MG/ML Injectable Solution                                             | HYALURONATENA (GEL-ONE) 10MG/ML SYR 3ML            | 0     | 1    |
| Sf9 Cell                                                                                    | SR cell line                                       | 0     | 1    |
| fragile histidine triad diadenosine triphosphatase                                          | Hemin-Controlled Translational Repressor           | 0     | 1    |
| Meningismus                                                                                 | hemiballismus                                      | 0     | 1    |
| Endocervix                                                                                  | Endocervical epithelium structure (body structure) | 0     | 1    |

## CONCLUSION

#### **Complete:**

- 1. Define task and datasets which faithfully represent the real-world task.
- 2. Design a **baseline system** that can address the task and dataset designed.

#### In Progress:

- 1. Perform quantitative and qualitative evaluation of baseline system.
  - 1. More baselines are necessary for classification system
  - 2. Thorough qualitative evaluation is crucial

#### FUTURE CHALLENGES

• Addressing the more moderate but still important class imbalance problem

- Distributionally robust optimization (Levy et al. 2020) or other similar techniques
- UMLS is noisy and synonymy task is often ambiguous
- Data scarcity
  - Only data point for determining synonymy is a short phrase and the source it comes from.
  - This is unrealistic since other data points are used by humans to make determination (other source synonyms, source semantic categories, descriptions, hierarchical structure, etc.).
  - Adding this information is crucial for models to perform better.

#### REFERENCES

- Bhowmik, R., Stratos, K., & de Melo, G. (2021). Fast and Effective Biomedical Entity Linking Using a Dual Encoder. ArXiv, abs/2103.05028.
- Jeff Johnson, Matthijs Douze, Hervé Jégou: "Billion-scale similarity search with GPUs", 2017; [http://arxiv.org/abs/1702.08734].
- Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, Shaoping Ma: "RepBERT: Contextualized Text Embeddings for First-Stage Retrieval", 2020; [http://arxiv.org/abs/2006.15498 arXiv:2006.15498].
- Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma: "Optimizing Dense Retrieval Model Training with Hard Negatives", 2021; [http://arxiv.org/abs/2104.08051 arXiv:2104.08051].
- Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, Arnold Overwijk: "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval", 2020;
- Liu, F., Shareghi, E., Meng, Z., Basaldella, M., & Collier, N. (2021). Self-Alignment Pretraining for Biomedical Entity Representations. NAACL.
- Sheng Zhang, Hao Cheng, Shikhar Vashishth, Cliff Wong, Jinfeng Xiao, Xiaodong Liu, Tristan Naumann, Jianfeng Gao, Hoifung Poon: "Knowledge-Rich Self-Supervision for Biomedical Entity Linking", 2021; [http://arxiv.org/abs/2112.07887 arXiv:2112.07887].
- Xu D, Miller T. A simple neural vector space model for medical concept normalization using concept embeddings. J Biomed Inform. 2022 Jun; 130:104080. doi: 10.1016/j.jbi.2022.104080. Epub 2022 Apr 23. PMID: 35472514.
- Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, Haifeng Wang: "RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering", 2020;