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MOTIVATION

UMLS is a medical knowledge base which combines over 200 medical 
terminologies.
 Valuable repository for medical knowledge and useful resource for inter-operability

UMLS contains
 ~4 million concepts
 ~16 million atoms (1 atom = 1 string from a specific source)

UMLS grows larger every year
 Approx. a million atoms are added every year



MOTIVATION

UMLS editors integrate new atoms into UMLS
 Every new atom needs to be associated with atoms already in UMLS.
 Task is called UMLS Vocabulary Alignment or UVA
 The task can range from very simple to extremely challenging and often requires in-depth 
domain knowledge.

 Simple Examples:
 “ascorbic acid” => “vitamin C”
 “lung cancer” => ”pulmonary carcinoma”

 Complex Example:
 “SPRL1B” => “LCE2B gene”



MOTIVATION

Given that there are ~1010 atom comparisons to be done for each new 
batch of terms, updating UMLS can become extremely expensive.
 A medium sized team is unable to keep up with the task by itself.

Currently, UMLS editors rely on rule-based tools.
 Thus, our team has been exploring deep learning methods to alleviate the burden on UMLS 
editors and improve UMLS quality.



PREVIOUS WORK

Our lab’s previous UVA work is formulated as a task where every possible 
pair would need to be classified.
Due to the massive size of this task (1010 – 1014 pairs), current work is done 
on idealized (but still large-scale) subsets (108 pairs).
 166 million negative edges when there are 1010 possible negative edges.



CURRENT TEST DATASET

Non-Synonym 
Edges

~166 million
Synonym Edges

~5 million



REAL WORLD DATASET

Non-Synonym Edges

~1014 edges
(Not to scale) Synonym Edges

~ 30 million edges



PREVIOUS WORK

Current datasets use a prevalence which is 106 times lower than real world 
datasets
 Prevalence: % of positive samples in dataset

 This prevalence gap means that even models which perform well in current 
datasets would likely yield poor results in the real-world scenario.
Many negative edges would be incorrectly predicted as positive.



TRANSLATIONAL UVA GOALS

Main Goal: Build a system which can be directly deployed to support UMLS 
editors for UMLS construction and updating.

Research Aims:
1. Define task and datasets which faithfully represent the real-world task.
2. Design a baseline system that can address the task and dataset 

designed.
3. Perform quantitative and qualitative evaluation of baseline system.



TRANSLATIONAL UVA GOALS

Research Aims:
1. Define task and datasets which faithfully represent the real-world task.
 Task Definition: For each new atom to be introduced to UMLS, find all synonymous atoms 

in the current UMLS. (analogous to real-world task)
 Evaluation Dataset:
 430k new atoms were introduced between the first and second version of (2020AA vs 

2020AB). 
 For each of these 430k new atoms in 2020AB, we are looking to determine which 

atoms are likely to be its synonyms in UMLS 2020AA.
2. Design a baseline system that can address the task and dataset 

designed.
3. Perform quantitative and qualitative evaluation of baseline system.



TRANSLATIONAL UVA GOALS

Research Aims:
1. Define task and datasets which faithfully represent the real-world task.
2. Design a baseline system that can address the task and dataset 

designed.
 Two-step system:
 High recall candidate generation (fast but misses few potential synonyms)
 High precision synonymy classification (slower but more discriminative)

3. Perform quantitative and qualitative evaluation of baseline system.



TRANSLATIONAL UVA GOALS

Research Aims:
1. Define task and datasets which faithfully represent the real-world task.
2. Design a baseline system that can address the task and dataset 

designed.
3. Perform quantitative and qualitative evaluation of baseline system.
 Quantitative Evaluation
 High Recall Step
 Recall at K - % of true synonyms that can be found within the first K atoms retrieved 
from the original UMLS.

 High Precision Step
 F1, Precision and Recall on true synonym pairs



TRANSLATIONAL UVA GOALS

Research Aims:
1. Define task and datasets which faithfully represent the real-world task.
2. Design a baseline system that can address the task and dataset 

designed.
3. Perform quantitative and qualitative evaluation of baseline system.
 Qualitative Evaluation
 Sample output should be carefully examined by biomedical experts
 UMLS has some ambiguities and errors, thorough analysis is required to ascertain the 

quality of the predictions compared to the “gold standard”.



METHODOLOGY

High recall candidate generation (fast but gets many false positives)
High precision synonymy classification (slower but more discriminative)
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High recall candidate generation (fast but gets many false positives)
High precision synonymy classification (slower but more discriminative)



HIGH RECALL STEP: FORMULATION

 Task formulation:
 430k query terms
 ~10 million term database
 Retrieve a limited # of candidates from the database for each query which hopefully 
contain relevant candidates.

Similar tasks:
 Information retrieval (IR) (finding relevant documents with respect to a query)
 Entity linking (finding relevant concepts with respect to a term mentioned in text)



HIGH RECALL STEP: FORMULATION

Both IR and entity linking use modern textual encoders (often pre-trained 
language models) and a fast implementation of the k-nearest neighbors (k-
NN) algorithm to achieve a fast and high recall candidate retrieval step.
Spurred on by PLMs as well as k-NN speedups using GPUs (Johnson et al. 
2017)



HIGH RECALL STEP: FORMULATION
We model our high recall approach directly on biomedical entity linking:
 In this task, a concept is mentioned within a sentence:
 “The patient was diagnosed with pulmonary carcinoma.”
We then link this mention to a UMLS entity which represents “pulmonary carcinoma”.



HIGH RECALL STEP: BIOMEDICAL ENTITY LINKING

UMLS
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HIGH RECALL STEP: OUR APPROACH

Old 
UMLS
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HIGH RECALL STEP: ENCODERS

Any system that produces a dense vector from text can be an encoder.
 Examples:
 Current UVA models like LexLM, ConLM and UBERT.
 BioWordVec embeddings
 Pretrained language models (PLMs) like BERT, RoBERTa
 Biomedical PLMs (PubMedBERT)
 Biomedical PLMs with infused UMLS information (SAPBERT and KRISSBERT)
 (Liu et al. 2020, Zhu et al. 2020, Bhowmik et al. 2021, Zhang et al. 2022, Xu et al. 

2022)



HIGH RECALL STEP: GPU K-NN SPEEDUP

 Benchmarking k-NN for LexLM on GPUs vs CPU
 Database: 8,521,220 AUIs
 Queries: 430,135 AUIs
 Dimension: 50

 CPU Time: 3 hours (180 minutes)
GPU Time: 3 minutes
GPU offers around a 60 times speedup to the k-NN



HIGH RECALL STEP: RESULTS

Model R @ Source 
Synonymy

R@1 R@5 R@10 R@50 R@100 R@200 R@500 R@1000 R@2000

PubMedBERT - 9% 16% 18% 23% 25% 28% 31% 34% 37%
LexLM - 10% 22% 28% 42% 47% 51% 56% 59% 62%
KRISSBERT - 13% 25% 30% 43% 48% 53% 59% 64% 68%
SAPBERT - 20% 44% 53% 71% 76% 81% 86% 88% 89%

PubMedBERT (Source Syn) 35% 41% 46% 48% 52% 53% 55% 57% 59% 61%
LexLM (Source Syn) 35% 42% 51% 56% 66% 70% 73% 77% 79% 81%
KRISSBERT (Source Syn) 35% 43% 51% 55% 64% 68% 71% 76% 79% 82%
SAPBERT (Source Syn) 35% 46% 63% 70% 83% 86% 90% 93% 95% 95%



HIGH RECALL STEP: RESULTS

Model R @ Source 
Synonymy

R@1 R@5 R@10 R@50 R@100 R@200 R@500 R@1000 R@2000

PubMedBERT - 9% 16% 18% 23% 25% 28% 31% 34% 37%
LexLM - 10% 22% 28% 42% 47% 51% 56% 59% 62%
KRISSBERT - 13% 25% 30% 43% 48% 53% 59% 64% 68%
SAPBERT - 20% 44% 53% 71% 76% 81% 86% 88% 89%

PubMedBERT (Source Syn) 35% 41% 46% 48% 52% 53% 55% 57% 59% 61%
LexLM (Source Syn) 35% 42% 51% 56% 66% 70% 73% 77% 79% 81%
KRISSBERT (Source Syn) 35% 43% 51% 55% 64% 68% 71% 76% 79% 82%
SAPBERT (Source Syn) 35% 46% 63% 70% 83% 86% 90% 93% 95% 95%

SAPBERT (Source Syn + LUI) 58% 25% 60% 71% 88% 91% 94% 96% 97% 98%



HIGH RECALL STEP: TAKEAWAYS

 SAPBERT is by far the most effective encoder.
 Leveraging basic lexical similarity and source synonymy greatly improves candidates 
obtained from only dense representations. 
 Throwing away rule-based signal is detrimental to performance.

We achieve above 90% recall at above 100 candidates with the best system.
 This is high enough for a useful real-world system to support UMLS editors (humans in the loop are 

still vital).



METHODOLOGY

High recall candidate generation system (fast but gets many false positives)
High precision synonymy classification (slower but more discriminative)



HIGH PRECISION STEP: FORMULATION

Output from first step:
 ~100-200 (query term, candidate term) pairs for each query term
 Imbalanced distribution: only 5-10% of these pairs are synonymous (much higher prevalence than natural 

one)

 Task formulation:
 Same formulation used by previous UVA methods (LexLM, UBERT))
 Binary synonymy classification for each (query term, candidate term) pair.

 Approach:
 Given the success of PLM fine-tuning in a wide range of NLP tasks, we leverage PLMs.
 To deal with the heavy class imbalance, we sample a balanced number of positive and negative 

pairs for training.



HIGH PRECISION STEP: DATASETS

Dev and Test Datasets
 Top 100 SAPBERT candidates from the 430k new 2020AB term dataset.
 Set aside 1000 and 2000 concepts for dev and test sets, respectively.
 Use all 100 candidates for each concept to create dev and test sets
 100,000 dev set and 200,000 test set pairs
 For this setting, we also add whatever synonyms are missing from the candidate list (not fully 

realistic but upper bound on performance)



HIGH PRECISION STEP: DATASETS

 Training Datasets
 Ideal Distribution
 Rest of 2020AB new terms (Same semantic group distribution as dev and test set)
 By using this training set, we are inadvertently introducing information about the new terms that we 

would not have in the real-world setting.
 Realistic Distribution
 We separate 400k UMLS 2020AA terms as a different “new” dataset.
 Find 100 k-NNs for each of these terms within what remains of 2020AA.
 Create 40 million training dataset to sample balanced datasets from.



HIGH PRECISION STEP: DATASETS

 Training Dataset Types
 Balanced
 Stratified
 Dev Set Equivalent: 100 candidates for each query term (not shuffled)

 Training Dataset Sizes
 10k
 100k
 200k
 500k



HIGH PRECISION STEP: MODELS

 Fine-tuned Models
 PubMedBERT

 Baselines
 UBERT (Original + SAPBERT)
 LexLM
 ConLM



HIGH PRECISION STEP: RESULTS

Model
Training 
Dataset

Training 
Data Type

Training 
Data Size F1 Precision Recall

SAPBERT + UBERT Synonymy Prediction UVA Train Stratified 166 M 27.4% 16.3% 87.4%

UBERT MLM + Synonymy Prediction UVA Train Stratified 166 M 35.0% 22.0% 85.0%

PubMedBERT Fine Tuning Ideal Balanced 10k 38.2% 24.6% 85.4%

PubMedBERT Fine Tuning Ideal Stratified 10k 40.6% 38.1% 43.3%

PubMedBERT Fine Tuning Ideal Balanced 100k 46.7% 31.7% 88.8%

PubMedBERT Fine Tuning Ideal Stratified 100k 33.4% 49.1% 25.3%

PubMedBERT Fine Tuning Ideal
Dev Set 

Equivalent 100k 25.9% 54.7% 17.0%



HIGH PRECISION STEP: TAKEAWAYS

 Both UBERT versions (which outperform other models in UVA work) underperform small-scale 
fine-tuning
 Small (100k samples) but more realistic datasets yield better real-world performance than training 

on millions of synonym pairs.

 Training set distribution drastically affects performance 
 Balanced datasets (1:1) yield high recall but low precision
 Stratified datasets (1:~10) yields higher precision but very low recall



HIGH PRECISION STEP: RESULTS

Model
Training 
Dataset

Training 
Data Type

Training 
Data Size F1 Precision Recall

PubMedBERT Fine Tuning Ideal Balanced 100k 46.7% 31.7% 88.8%

PubMedBERT Fine Tuning Realistic Balanced 100k 41.5% 27.3% 86.6%

PubMedBERT Fine Tuning Ideal Balanced 200k 42.8% 32.0% 64.7%

PubMedBERT Fine Tuning Realistic Balanced 200k 43.8% 29.0% 90.2%

PubMedBERT Fine Tuning Ideal Balanced 500k 52.5% 37.1% 90.0%

PubMedBERT Fine Tuning Realistic Balanced 500k 37.1% 23.1% 94.6%



HIGH PRECISION STEP: TAKEAWAYS

Original distribution training datasets underperform ideal distribution training.
 The correlation between dataset size and performance is not as strong as expected.
 Training is quite noisy 
 Training metrics keeps increasing but dev set performance drops after epoch 1 in most cases

 Precision is only at ~30-40%, not high enough for deployable system
 2/3 of all predicted synonym pairs are not synonymous according to gold labels
 Qualitative evaluation is necessary to determine how this model performs in practice



QUALITATIVE EVALUATION: FALSE POSITIVES

 Low precision problem is due to the high number of false positives
 For every 1 synonym pair predicted correctly, 2 are incorrect according to UMLS
 Unfortunately, or fortunately, it is very difficult to determine whether each of these false 
positives is a true error or a UMLS error
 The amount of time spent on each term would be very large (even for a person with some 

biomedical training)



QUALITATIVE EVALUATION: FALSE POSITIVES

Query Candidate Label Pred
arginine/serine-rich protein 1 SRA1 0 1

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F2 
pseudogene 3 ATP5MC3 gene 0 1

SDYS SDYS 0 1
BENZALKONIUM CHLORIDE 1 mg in 1 g TOPICAL CLOTH [Antiseptic 

Towel Benzalkonium Chloride] Pro Pet Dental Wipes 0.1 % Medicated Pad 0 1

transfer RNA tyrosine 1 (anticodon GUA) TRT-AGT2-1 gene 0 1
WW domain binding protein 1-like pseudogene 4 WBP4 gene 0 1

protirelin Thyrotropin-releasing factor, prepro- 0 1
sodium hyaluronate 23 MG/ML Injectable Solution HYALURONATE NA (GEL-ONE) 10MG/ML SYR 3ML 0 1

Sf9 Cell SR cell line 0 1
fragile histidine triad diadenosine triphosphatase Hemin-Controlled Translational Repressor 0 1

Meningismus hemiballismus 0 1
Endocervix Endocervical epithelium structure (body structure) 0 1



CONCLUSION

Complete:
1. Define task and datasets which faithfully represent the real-world task.
2. Design a baseline system that can address the task and dataset 

designed.

In Progress:
1. Perform quantitative and qualitative evaluation of baseline system.

1. More baselines are necessary for classification system
2. Thorough qualitative evaluation is crucial



FUTURE CHALLENGES

 Addressing the more moderate but still important class imbalance problem
 Distributionally robust optimization (Levy et al. 2020) or other similar techniques

 UMLS is noisy and synonymy task is often ambiguous
 Data scarcity
 Only data point for determining synonymy is a short phrase and the source it comes from.
 This is unrealistic since other data points are used by humans to make determination (other source 

synonyms, source semantic categories, descriptions, hierarchical structure, etc.).
 Adding this information is crucial for models to perform better.
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