DDSI Internship Experience

7/22/20

Will Hibbard

Background/ Overview

- The UMLS metathesaurus is a database of medical vocabularies and standards
- Goal: to semantically group the atoms in the UMLS database based on lexical and contextual information to allow for better synonymy prediction
- Why: sorting the terms into their semantic groups allows for better synonymy prediction with the atoms, but previous lexical only methods caused false synonymy between terms
 - Ex. Splint (shin) and splint (medical device)
- How: Using deep learning, we embed atoms into vectors and train a neural network on those until it can accurately predict the semantic groups of those atoms. Then, the model is tested with a dataset it's never seen before

Learning Neural Networks

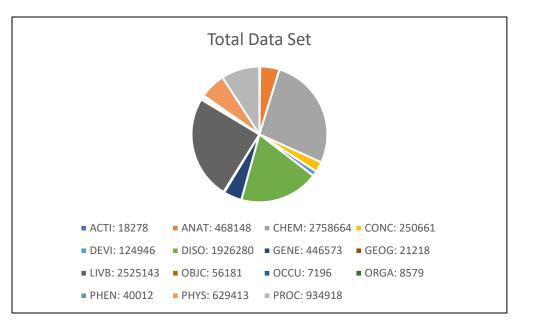
- I started by reading up on Neural Networks and going over example code with Yuqing
- The code I based my neural network off of was from a programming blog that made a neural network to classify wines by type
- Admittedly, I spent the first few weeks getting access to TOAD and Biowulf
- My network ended up being a 5-layer classification model with SAP BERT embedding
- SAP BERT was chosen because it maintained the sentence and paragraph structure of the atoms it embedded, allowing for contextual info like word placement and order to be considered

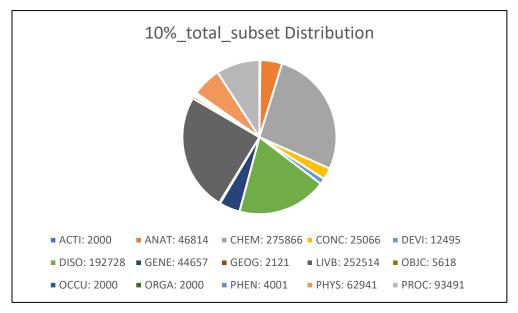
The Dataset

- Gathered with TOAD on a virtual machine
- The desired dataset could only have atoms that were in English and came from active source vocabularies
- The information in the dataset was AUI's, the string, and TUIs
 - AUIs were used as unique identifiers
 - The string was the data we wanted
 - TUIs were used to map the atoms to their correct groups so the model could gauge its performance
- The entire dataset was 10,000,000+ atoms and was too big to run normally, so two subsets were made for code training and testing

The Subsets

- The subsets used to train the model were ~1,000,000+ atoms, and were quicker and more manageable to run
- The subsets were assembled with stratified sampling to ensure that the model had practice sorting every one of the semantic groups
- 10 % subset: This subset was assembled with 10% of each SG to give the model something small to run that was proportionally accurate to the whole set
- Balanced subset: This subset was made of 7000 atoms from each SG to see how the model performed without bias weights towards larger SGs





Experimentation

- Experiments for the classification problem were done by running the datasets with different values for Epoch, Batch Size, Learning Rate, Hidden Layers, and nodes per Hidden Layer
 - Default: Epoch = 30, Batch Size = 512, Learning Rate = 0.0007, # of hidden layers = 3, nodes per layer = 64, 128, 512, etc...
- The parameters were adjusted individually to prevent overfitting the model
- After the optimal hyperparameters were collected, they were tested together on the datasets

Output

- The results of each run were broken down into precision, recall, F-1, average, macro average, and weighted average
 - Precision the model's accuracy in classifying an atom to a group
 - Recall was the positive classification correct
 - F-1 a score that says the weighted average of precision and recall
 - Accuracy how the model did across all classes
 - Macro average the unweighted average of each column
 - Weighted average the average that accounts for the class support
- The supports don't reflect the whole subset size as the code divides the subset into training, validation, and testing sets

Epoch=30, Batch size=512 precision recall f1-score support ACTI 0.19 0.52 0.27 400 ANAT 0.34 0.68 0.45 9363 CHEM 0.89 0.50 0.64 53736 0.50 5013 CONC 0.08 0.14 0.22 0.75 0.34 2499 DEVI 0.47 DISO 0.85 0.61 38546 0.88 0.58 8932 GENE 0.43 GEOG 0.04 0.24 0.06 424 LIVB 0.88 0.46 0.60 50503 0.07 0.39 0.11 1124 OBJC 0.24 0.11 OCCU 400 0.07 ORGA 0.07 0.29 0.11 400 0.33 0.18 800 PHEN 0.12 PHYS 0.73 0.85 0.79 12588 PROC 0.59 0.61 0.60 18699 0.54 203427 accuracy

0.37

0.76

0.51

Time=~20 min

0.54

0.37

203427

0.59 203427

macro avg acc

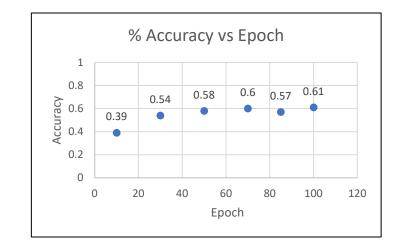
weighted avg acc

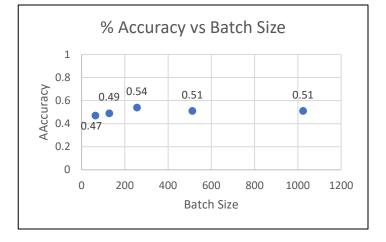
set = 10% total

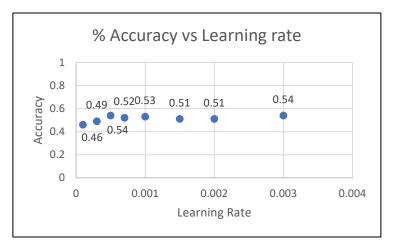
subset

Results

- Some incremental improvement in accuracy across optimal hyperparameters, but the overall accuracy was not practically applicable
- I was unable to get the whole dataset running until this week, so the results depict the subsets







Results pt. 2

Epoch = 30, BatchS	ize = 512			Epoch = 100,	BatchSiz	e = 256			Freeh 70 (at ab Cin	1024			LR = 0.0005, I	Epoch=3	80, Batcl	nSize=51	.2
precision recall f1-score support		precision recall f1-score support			Epoch = 70, BatchSize = 1024 precision recall f1-score support			precision recall f1-score support										
				· ·					preci	sion re	call T1-s	core s	upport					
ACTI 0.38	0.34	0.36	1400	ACTI	0.33	0.37	0.35	1400	ACTI	0.34	0.33	0.34	1400	ACTI	0.35	0.35	0.35	1400
ANAT 0.5	4 0.59	0.56	1400	ANAT	0.62	0.54	0.58	1400	ACT	0.54	0.55	0.54	1400	ANAT	0.60	0.54	0.57	1400
CHEM 0.4	19 0.56	0.52	1400	CHEM	0.47	0.56	0.51	1400	CHEM	0.49	0.55	0.50	1400	CHEM	0.52	0.54	0.53	1400
CONC 0.3	5 0.31	0.33	1400	CONC	0.34	0.31	0.33	1400	CONC	0.38	0.28	0.32	1400	CONC	0.34	0.33	0.33	1400
DEVI 0.60	0.58	0.59	1400	DEVI	0.62	0.58	0.60	1400	DEVI	0.55	0.59	0.57	1400	DEVI	0.59	0.57	0.58	1400
DISO 0.52	0.45	0.48	1400	DISO	0.44	0.50	0.47	1400	DISO	0.48	0.49	0.48	1400	DISO	0.50	0.50	0.50	1400
GENE 0.7	2 0.71	0.71	1400	GENE	0.72	0.71	0.72	1400	GENE	0.69	0.71	0.70	1400	GENE	0.72	0.73	0.73	1400
GEOG 0.3	4 0.35	0.35	1400	GEOG	0.35	0.35	0.35	1400	GEOG	0.36	0.31	0.33	1400	GEOG	0.31	0.37	0.34	1400
LIVB 0.62	0.58	0.60	1400	LIVB	0.58	0.61	0.60	1400	LIVB	0.59	0.59	0.59	1400	LIVB	0.60	0.61	0.60	1400
OBJC 0.3		0.37	1400	OBJC	0.37	0.37	0.37	1400	OBJC	0.35	0.36	0.36	1400	OBJC	0.40	0.34	0.37	1400
OCCU 0.3	8 0.35	0.37	1400	OCCU	0.42	0.36	0.38	1400	OCCU	0.40	0.35	0.38	1400	OCCU	0.33	0.38	0.35	1400
ORGA 0.3	2 0.36	0.34	1323	ORGA	0.37	0.32	0.34	1323	ORGA	0.37	0.34	0.35	1323	ORGA	0.33	0.36	0.35	1323
PHEN 0.3		0.37	1400	PHEN	0.38	0.39	0.38	1400	PHEN	0.38	0.39	0.38	1400	PHEN	0.43	0.35	0.39	1400
PHYS 0.74		0.79	1400	PHYS	0.74	0.82	0.78	1400	PHYS	0.75	0.81	0.78	1400	PHYS	0.77	0.81	0.79	1400
PROC 0.4	1 0.36	0.38	1400	PROC	0.40	0.38	0.39	1400	PROC	0.40	0.39	0.39	1400	PROC	0.40	0.37	0.39	1400
accuracy	-	48 209		accuracy		0.4	8 209	23	accuracy		0.4			accuracy		0.4		
macro avg 0.4			20923	macro avg	0.48	0.48	0.48	20923	macro avg	0.47	0.48	0.47	20923	macro avg	0.48	0.48	0.48	20923
0 0	.48 0.4	8 0.48	3 20923	weighted avg			0.48	20923	weighted ave			0.47	20923	weighted avg			3 0.48	20923
set = balanced data	a set			set = balance	d data se	et			set = balance	d data s	et			set = balance	d data s	et		

Results pt. 3

Layer 2 l	Remov	ved							
LR = 0.00	007 <i>,</i> E	poch	=30	D, Batcl	hS	ize =	51	2	
	precis	ion	rec	all f1-	sc	ore	sup	oport	
AC	CTI	0.34	Ļ	0.37	(0.35	1	1400	
A	VAT	0.5	1	0.64		0.57		1400	
CH	HEM	0.5	55	0.48		0.51	L	1400	
CC	ONC	0.3	84	0.35		0.35		1400	
D	EVI	0.61	L	0.55	(0.58		1400	
DI	SO	0.50)	0.48		0.49		1400	
GI	ENE	0.7	0	0.71		0.71		1400	
GI	EOG	0.3	37	0.32		0.34		1400	
LI	VB	0.57	,	0.62	(0.60	1	L400	
O	BJC	0.3	9	0.35		0.37		1400	
00	CCU	0.3	7	0.37		0.37		1400	
OI	RGA	0.3	88	0.34		0.36	5	1323	
PF	HEN	0.3	8	0.38		0.38		1400	
PF	HYS	0.7	7	0.81		0.79		1400	
PR	OC	0.36	5	0.41		0.38		1400	
accura	асу			0.4	48	20	92	3	
macro	avg	0.4	8	0.48		0.48		20923	}
weighte	d avg	0	.48	0.48	8	0.4	8	2092	23
set = bal	ancec	data	a se	et					

Layer 2 re	emoved							
LR=0.000	5, Epoch	=100 <i>,</i> E	BatchS	ize=256	5			
р	recision	recall	f1-sco	ore su	pport			
0	0.36	0.38	0.37	140	00			
1	0.57	0.57	0.57	140	00			
2	0.48	0.52	0.50	140	00			
3	0.35	0.32	0.34	140	00			
4	0.60	0.57	0.58	140	00			
5	0.50	0.46	0.48	140	00			
6	0.68	0.73	0.70	140	00			
7	0.37	0.33	0.35	140	00			
8	0.57	0.62	0.59	140	00			
9	0.37	0.37	0.37	140	00			
10	0.34	0.36	0.3	5 14	00			
11	0.36	0.36	0.3	6 13	23			
12	0.38	0.38	0.3	8 14	00			
13	0.77	0.83	0.8	0 14	00			
14	0.41	0.35	0.3	8 14	00			
accura	су		0.48	2092	.3			
macro a	avg 0.4	47 0	.48	0.47	20923			
weighted	lavg C	.47	0.48	0.47	20923			
set = balanced data set								

Future Directions

- Running the model to find the upper limits of the variables I changed for experimentation
- Create a confusion matrix of what atoms got misclassified into which classes
- Binary prediction where the model determines if atoms in the dataset belong to one class, for each class
- Fine tuning the model based on which classes the model isn't confident about assigning atoms to
- Use BioWordVec with SAP BERT to combine strings with SAB

Epoch = 300, SAB & STR w/ S-B & BWV									
pre	ecision	recall	f1-score	e support					
0	0.46	0.62	0.53	400)				
1	0.70	0.85	0.77	936	3				
2	0.94	0.84	0.89	5373	86				
3	0.24	0.46	0.32	501	3				
4	0.60	0.77	0.67	249	9				
5	0.81	0.69	0.74	3854	16				
6	0.86	0.97	0.91	893	2				
7	0.17	0.34	0.23	424	ļ				
8	0.96	0.78	0.86	5050)3				
9	0.18	0.36	0.24	112	4				
10	0.16	0.30	0.20	40	0				
11	0.17	0.28	0.21	40	0				
12	0.21	0.36	0.27	80	0				
13	0.93	0.97	0.95	125	88				
14	0.53	0.81	0.64	186	99				
accuracy	/		0.79 2	20342	27				
macro av	'g 0.	53 0	.63 0.	56 2	203427				
weighted a	avg C).84	0.79 (0.80	203427				
set = 10 %	subset								

References

- Bajaj, A. (2022, March 18). Performance Metrics in Machine Learning [Complete Guide] [web log]. Retrieved June 21, 2022, from <a href="https://neptune.ai/blog/performance-metrics-in-machine-learning-complete-guide#:~:text=%20Performance%20Metrics%20in%20Machine%20Learning%20%20,now%20understand%20the%20importance%200f%20performance...%20More%20.
- Brownlee, J. (2020, September 11). Understand the impact of learning rate on neural network performance. Machine Learning Mastery. Retrieved July 22, 2022, from https://machinelearningmastery.com/understand-thedynamics-of-learning-rate-on-deep-learning-neural-networks/
- Gad, A. (2021, February 19). Evaluating deep learning models: The confusion matrix, accuracy, precision, and recall. KDnuggets. Retrieved July 22, 2022, from https://www.kdnuggets.com/2021/02/evaluating-deep-learning-models-confusion-matrix-accuracy-precision-recall.html
- HPC @ NIH (2022, June 6). Locally mounting HPC system directories. National Institutes of Health. Retrieved June 15, 2022, from https://hpc.nih.gov/docs/hpcdrive.html
- Koehrsen, W. (2018, October 2). Neural network embeddings explained. Medium. Retrieved May 25, 2022, from https://towardsdatascience.com/neural-network-embeddings-explained-4d028e6f0526
- Leung, K. (2022, June 20). Micro, Macro & weighted averages of F1 score, clearly explained. Medium. Retrieved July 22, 2022, from https://towardsdatascience.com/micro-macro-weighted-averages-of-f1-score-clearly-explained-b603420b292f
- Malik, F. (2021, March 4). Neural networks bias and weights. Medium. Retrieved July 22, 2022, from https://medium.com/fintechexplained/neural-networks-bias-and-weights-10b53e6285da
- Mao, Y., & Fung, K. W. (2020). Use of word and graph embedding to measure semantic relatedness between unified medical language system concepts. *Journal of the American Medical Informatics Association*, 27(10), 1538–1546. https://doi.org/10.1093/jamia/ocaa136
- Nguyen, V., Yip, H. Y., & Bodenreider, O. (2021). Biomedical vocabulary alignment at scale in the UMLS metathesaurus. Proceedings of the Web Conference 2021. https://doi.org/10.1145/3442381.3450128
- Nguyen, V., Yip, H. Y., Bajaj, G., Wijesiriwardene, T., Javangula, V., Parthasarathy, S., Sheth, A., & Bodenreider, O. (2022). Context-enriched learning models for aligning biomedical vocabularies at scale in the UMLS metathesaurus. *Proceedings of the ACM Web Conference 2022*. https://doi.org/10.1145/3485447.3511946
- UMLS® Reference Manual [Internet]. Bethesda (MD): National Library of Medicine (US); 2009 Sep-. Table 1. [Concept Names and Sources (File = MRCONSO.RRF)]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9685/table/ch03.T.concept_names_and_sources_file_mr/
- UMLS® Reference Manual [Internet]. Bethesda (MD): National Library of Medicine (US); 2009 Sep-. 4, Metathesaurus Original Release Format (ORF) [Updated 2021 Aug 20]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9682/
- Verma, A. (2020, March 18). PyTorch [Tabular] Multiclass Classification. Retrieved June 22, 2022, from https://towardsdatascience.com/pytorch-tabular-multiclass-classification-9f8211a123ab.
- Wood, T. (2019, May 17). F-score. DeepAI. Retrieved July 22, 2022, from https://deepai.org/machine-learning-glossary-and-terms/f-score

Thank You