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Abstract

The current UMLS (Unified Medical Language System)
Metathesaurus construction process for integrating over 200
biomedical source vocabularies is expensive and error-prone
as it relies on the lexical algorithms and human editors for de-
ciding if the two biomedical terms are synonymous. Recent
work has aimed to improve the Metathesaurus construction
process using a deep learning approach with a Siamese Net-
work initialized with BioWordVec embeddings for predict-
ing synonymy among biomedical terms. Recent advances in
Natural Language Processing, such as Transformer models,
and Graph Neural Networks (GNN), such as Graph Attention
Networks (GAT), have achieved state-of-the-art (SOTA) on
different downstream tasks. Therefore, these techniques are
therefore logical candidates for a synonymy prediction task
as well.
In this paper, we evaluate different approaches of employ-
ing biomedical BERT-based Transformer models and Graph
Attention Networks for synonymy prediction. We employ
BERT models in two model architectures: (1) Siamese Net-
work, and (2) Transformer for predicting synonymy in the
UMLS Metathesaurus. We aim to validate if using the BERT
models or GNNs can actually outperform the existing ap-
proaches for synonymy prediction. In the existing Siamese
Networks with LSTM and BioWordVec embeddings, we
replace the BioWordVec embeddings with the biomedical
BERT embeddings extracted from each BERT model using
different ways of extraction. For the Transformer architec-
ture, we evaluate the use of the different biomedical BERT
models that have been pre-trained using different datasets and
tasks. For the GNN architecture, we formulate synonymy pre-
diction as a link prediction task use a graph neural network
(GNN) with a graph attention layer to predict if two terms are
synonymous in the UMLS Metatharsus.
Given the SOTA performance of these BERT models for
other downstream tasks, our experiments yield surprisingly
interesting results: (1) employing these biomedical BERT-
based models do not outperform the existing approaches us-
ing Siamese Network with BioWordVec embeddings for the
UMLS synonymy prediction task, (2) the original BioBERT
large model that has not been pre-trained with the UMLS
outperforms the SapBERT models that have been pre-trained
with the UMLS, and (3) using the Siamese Networks yields
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better performance for synonymy prediction when compared
to using the biomedical BERT models and the GNN architec-
ture.

1 Introduction
The Unified Medical Language System (UMLS) (Boden-
reider 2004) is a biomedical terminology integration sys-
tem that includes over 200 source vocabularies1, includ-
ing CPT, ICD-10, MeSH, and SNOMED CT. The UMLS
Metathesaurus construction process organizes synonymous
terms from these source vocabularies into concepts. The On-
tology Alignment Evaluation Initiative2 (OAEI) uses three
well-defined vocabularies (NCI, FMA, and SNOMED CT)
from the Metathesaurus for their ontology alignment task
(Euzenat et al. 2011). Unlike the ontologies used by OAEI,
not all vocabularies in the UMLS are well-defined or repre-
sented as ontologies. Therefore, when we refer to Metathe-
saurus construction process we use the phrase vocabulary
alignment instead of ontology alignment.

The Metathesaurus construction process uses a lexical
similarity model and semantic pre-processing to determine
synonymy. Human editors determine the final set of synony-
mous terms. The large scale and diversity of the Metathe-
saurus make the construction process very challenging, te-
dious, and error-prone for human editors. To assist the
UMLS Metathesaurus construction process, Nguyen et al.
introduce the UMLS Vocabulary Alignment (UVA) task, or
synonymy prediction (Nguyen, Yip, and Bodenreider 2021).
The synonymy prediction task takes in terms (or “atoms”) as
input to determine synonymy among them. The authors de-
sign and train a Siamese network to predict if two atoms
from UMLS are synonymous (Nguyen, Yip, and Boden-
reider 2021; Nguyen and Bodenreider 2021). The Siamese
network is initialized using BioWordVec embeddings that
are learned using fastText (Bojanowski et al. 2017) to en-
code atom strings. The authors use the Manhattan distance
to compute the (dis)similarity in the final output representa-
tions from the Siamese network. Synonymous pairs can be

1https://www.nlm.nih.gov/pubs/techbull/mj21/mj21 umls
2021aa release.htmll

2http://oaei.ontologymatching.org/



predicted using different similarity thresholds. We describe
this approach in more detail in Section 5.

Given the success of Transformer models in Natural
Language Processing (NLP) (Devlin et al. 2018; Vaswani
et al. 2017), we evaluate different approaches of employ-
ing biomedical BERT-based models in two model architec-
tures: (1) a Siamese Network (Nguyen, Yip, and Bodenrei-
der 2021; Nguyen and Bodenreider 2021), and (2) a Trans-
former model (Devlin et al. 2018) for predicting synonymy
in the UMLS Metathesaurus. We first evaluate different fea-
ture extraction techniques to replace BioWordVec embed-
dings with BERT embeddings in the current state-of-the-art
Siamese Networks used for synonymy prediction (Nguyen,
Yip, and Bodenreider 2021; Nguyen and Bodenreider 2021).
Second, we evaluate the use of the Transformer architecture
using the biomedical BERT models for synonymy predic-
tion. In particular, we use nine different biomedical BERT
models: BioBERT (Lee et al. 2020), BioBERT Large (Lee
et al. 2020), BlueBERT (Peng, Yan, and Lu 2019), SapBERT
(Liu et al. 2020), UMLSBERT (Michalopoulos et al. 2020),
BioBERT + SapBERT (Liu et al. 2020), BlueBERT + Sap-
BERT (Liu et al. 2020), UMLSBERT + SapBERT (Liu et al.
2020), VanillaBERT + SapBERT (Liu et al. 2020).

In this work, we also explore the use of graph neu-
ral networks (GNN) for synonymy prediction. The existing
Siamese Networks (Nguyen, Yip, and Bodenreider 2021;
Nguyen and Bodenreider 2021) used for predicting syn-
onymous terms only use lexical features. While the lexical
features carry meaningful information, we hypothesis that
incorporating additional graph features (i.e. structural and
hierarchical features) will help with synonymy prediction
boost precision. To exploit the structural features and hi-
erarchy of the Metathesaurus we formulate the synonymy
prediction as a link prediction tasks. Given two atoms from
UMLS we aim to predict if an edge representing the syn-
onymy among the atoms exists. To solve, this link prediction
task, we use a GNN with a graph attention layer (Veličković
et al. 2017; Zhang et al. 2019a) to incorporate information
from an atom’s neighbors (e.g. the semantic group, the par-
ent source vocabulary).

Contributions. Given the SOTA performance of these
BERT models for other downstream tasks, our experiments
yield surprisingly interesting results: (1) employing these
biomedical BERT-based models do not outperform the ex-
isting approaches using Siamese Network with BioWord-
Vec embeddings for the UMLS synonymy prediction task,
(2) the original BioBERT large model that has not been pre-
trained with the UMLS outperforms the SapBERT models
that have been pre-trained with the UMLS, and (3) using the
Siamese Networks yields better performance for synonymy
prediction when compared to using the biomedical BERT
models and the GNN architecture.

2 Background: Knowledge Representation in
the UMLS Metathesaurus

The UMLS Metathesaurus links terms and codes between
health records, pharmacy documents, and insurance docu-
ments (Bodenreider 2004). The Metathesaurus consists of

Tuple String Source SCUI AUI CUI SG
t1 Headache MSH M0009824 A0066000 C0018681 Disorders
t2 Headaches MSH M0009824 A0066008 C0018681 Disorders
t3 Cranial Pains MSH M0009824 A1641924 C0018681 Disorders
t4 Cephalodynia MSH M0009824 A26628141 C0018681 Disorders
t5 Cephalodynia SNOMEDCT US 25064002 A2957278 C0018681 Disorders
t6 Headache (finding) SNOMEDCT US 25064002 A3487586 C0018681 Disorders

Table 1: Examples of synonymous atoms from a Metathe-
saurus concept with associated identifiers

several building blocks, including atoms and concepts (clus-
ters of synonymous atoms). Each atom is a term from a
specific source vocabulary and each concept is a cluster
(or grouping) of atoms. All atoms in the UMLS Metathe-
saurus are assigned a unique identifier (AUI). Atom strings
in the UMLS are also assigned a semantic group (SG) re-
flecting the semantics of the string in the source vocabu-
laries. the source When the same term appears in different
source vocabularies, the individual terms are assigned sepa-
rate AUIs. Table 1 contains examples of synonymous atoms
and the various types of identifiers assigned to each respec-
tive atom for a particular concept (i.e. C0018681). For ex-
ample, the term “Cephalodynia” appearing in both MSH and
SNOMEDCT US has different AUIS as shown in Table 1:
“A26628141” and “A2957278” respectively. AUIs are then
linked to a unique string identifier (SUI) to represent oc-
currences of the same term. Any lexical variation in char-
acter set of the term, upper-lower case, or punctuation re-
sults in a separate SUI. Additionally, the strings “Headache”
and “Headaches” have different AUIs because of the lex-
ical variation (see Table 1). Finally, each concept (cluster
of synonymous terms) in the Metathesaurus is labelled with
a unique identifier (CUI). To recap, every atom (or term)
has an unique identifier (AUI) is linked to a single string
(STR), is associated with a semantic group (SG), and be-
longs to a single concept with a unique identifier (CUI).

3 Problem Formulation
To formulate the UMLS Metathesaurus construction process
as a machine / deep learning task, Nguyen et al. (Nguyen,
Yip, and Bodenreider 2021; Nguyen and Bodenreider 2021)
view synonymy prediction as a similarity task. The task is to
identify synonymous atoms by measuring the (dis)similarity
among pairs of atoms. Finding synonymous atoms pairs is
comparable to finding a cluster of synonymous atoms. Of
note, the authors refrain from treating this as a classification
task, because it is unfeasible to train a classifier to predict
one out of 4.28 million classes (i.e. concepts) present in the
2020AA UMLS release.

A machine-learning model should be able to identify the
(a)synonymy among atoms are that lexically:

• similar but are not synonymous, e.g., “Lung disease and
disorder” versus “Head disease and disorder”

• dissimilar but are synonymous, e.g., “Addison’s disease”
versus “Primary adrenal deficiency”

We maintain the same problem definition proposed
by (Nguyen, Yip, and Bodenreider 2021). The syn-
onymy prediction task is defined as follows. Let T =



(SSTR, SSRC , SSCUI , SAUI , SSG) be the set of all input tu-
ples in the Metathesaurus where:

SSTR is the set of all atom names,
SSRC is the set of all source vocabulary names,
SSRC is the set of all source vocabulary unique identi-

fiers,
SAUI is the set of all atom unique identifiers, and
SSG is the set of all semantic groups.

Consider four sample tuples from Table 1:
t1 = (“Headache”, “MSH”, “M0009824”, “A0066000”,

“Disorders”)
t3 = (“Cranial Pains”, “MSH”, “M0009824”,

“A1641924”, “Disorders”)
t4 = (“Cephalodynia”, “MSH”, “M0009824”,

“A26628141”, “Disorders”)
t5 = (“Cephalodynia”, “SNOMEDCT US”,

“M0009824”, “A3487586”, “Disorders”).
The tuples shown here consist of (str, src, scui, aui, sg),

where str is the original string of the term from the source
vocabulary (src), scui is the source vocabulary identifier,
aui is the unique atom identifier, and sg is the semantic
group.

Let (ti, tj) be a pair of input tuples, where i 6= j and each
tuple is initialized from a different source vocabulary in the
form of (str, src, scui, aui, sg). Let f : T × T → 0, 1 be a
prediction function that maps a pair of input tuples to either
0 or 1. If f(ti, tj) = 1, then the two strs, (stri, strj), from
ti and tj are synonymous.

4 Dataset
We thank Nguyen et al. for sharing the training data used in
their work (Nguyen, Yip, and Bodenreider 2021; Nguyen
and Bodenreider 2021). The dataset is created using the
2020AA release of the UMLS Metathesaurus and only con-
tains English terms from active source vocabularies. There
are approximately 27.9M synonymous pairs (positive sam-
ples) in the UMLS and the approximately 1014 pairs of non-
synonymous atom (negative samples). The ratio of negative
samples to positive samples is large because most atoms do
not share a CUI. To create a better class balance between the
negative and positive samples, the authors reduce the nega-
tive samples to approximately 170M (Nguyen, Yip, and Bo-
denreider 2021). Additionally, Nguyen et al. (Nguyen, Yip,
and Bodenreider 2021; Nguyen and Bodenreider 2021) cre-
ated different dataset splits based on the lexical similarity
and the number of negative and positive training pairs. In this
work, we use the ALL split of the dataset used in (Nguyen,
Yip, and Bodenreider 2021; Nguyen and Bodenreider 2021).
The ALL dataset contains the following splits:

• TOPN SIM: negative pairs with the highest similarity
• RAN SIM: random negative pairs having some similar-

ity
• RAN NOSIM: random negative pairs having no similar-

ity

The training and testing datasets are mutually exclusive and
do not contain overlapping examples. For our study, we use
the ALL dataset and Table 2 contains the dataset statistics.

Type Negative Examples Positive Examples Total
Training and Validation 170,075,628 22,324,834 192,400,462
Testing 167,454,653 5,581,209 173,035,862

Table 2: Dataset Statistics

We refer the readers to Section 4.2 of (Nguyen, Yip, and
Bodenreider 2021) for a complete description of the dataset
generation process.

5 Related Work
Siamese Networks for UVA
Nguyen et al. (Nguyen, Yip, and Bodenreider 2021) as-
sess the similarity of atoms using lexical features of the
atom strings (src). The authors design a Siamese Ne-
towrk that inputs a pair of atom strings, (srci, srcj), where
i 6= j, and outputs a similarity score between 0 and 1,
sim(srci, srcj) ∈ [0, 1]. The inputs are pre-processed, then
sent through an embedding layer initialized with BioWord-
Vec embeddings (Zhang et al. 2019b). The word embed-
dings are then fed into Bidirectional Long Short Term Mem-
ory (Bi-LSTM) layers to learn the semantic and syntac-
tic features of the atoms through as a sequence of tokens.
The outputs from the Bi-LSTMs are then fed into two con-
secutive dense layers consisting of 128 hidden units and
50 respectively. The learned representation for each atom
are then fed into a Manhattan distance similarity function,
exp(−||LSTMA − LSTMB ||1) ∈ [0, 1] to determine the
similarity. In their follow-up work (Nguyen and Bodenrei-
der 2021), Nguyen et al. add an attention layer that improves
the precision of the network for synonymy prediction by
+3.63% and decreases recall by -1.42%. Figure 2 displays
the Siamese Network architecture. The asterisk next to the
attention layer indicates that the additional layer is only used
in Nguyen et al.’s follow up work (Nguyen and Bodenreider
2021). Given the success of Transformer models for differ-
ent NLP tasks, the objective of this work is to investigate the
performance of context-aware embeddings extracted using
different methods from various domain-specific BERT mod-
els with the Siamese networks introduced in (Nguyen and
Bodenreider 2021; Nguyen, Yip, and Bodenreider 2021).
In this work, we replace the BioWordVec embeddings with
embeddings extracted from biomedical BERT models using
different feature extraction techniques. In Section 7, we out-
line our experimental setup.

Contextualized Word Representations and
Biomedical BERT Models
Distributed representations (e.g. word2vec, fastText) pro-
vide a single embedding for lexically similar but seman-
tically dissimilar words (Mikolov et al. 2013; Pennington,
Socher, and Manning 2014; Bojanowski et al. 2017). Re-
cent advances in Natural Language Processing (NLP) have
led to better performing contexualized embeddings that are
learned using Transformer models (e.g. BERT) (Vaswani
et al. 2017; Devlin et al. 2018). Transformer models pro-
duce contextualized word representations that are informed



by the surrounding words in the input. Additionally, Trans-
formers handle long range dependencies in sequences en-
tirely through self-attention instead of sequence-dependent
RNNs (Lin et al. 2017). Embeddings extracted from Trans-
former models have outperformed word2vec based embed-
dings on several NLP tasks (Devlin et al. 2018; Vaswani
et al. 2017).

Bidirectional Encoder Representations from Transform-
ers (BERT) is a key technical innovation that applies the
attention mechanism found in Transformers to language
models. Unlike previous efforts in language modelling,
which looked at text sequences in a unidirectional manner,
BERT processes text sequences bidirectionally and learns a
deeper sense for the context and flow of a language (De-
vlin et al. 2018). The BERT architecture is designed to pro-
vide such contextualized representations. In order to achieve
the contextual embeddings, BERT models are trained us-
ing two self-supervised training tasks: Masked Language
Model (MLM) and Next Sentence Prediction (NSP) (Devlin
et al. 2018). Current research shows these models can be
pre-trained on large domain-specific corpora and fine-tuned
on smaller domain specific tasks to achieve better perfor-
mance on downstream tasks (Lewis et al. 2020). Biomedical
NLP research follows this trend and has shown that BERT-
based models such as BioBERT (Lee et al. 2020), Blue-
BERT (Peng, Yan, and Lu 2019), SapBERT (Liu et al. 2020)
trained on domain-specific datasets outperform models that
use more traditional word embeddings generated from mod-
els like word2vec and fastText. In Section 6, we provide
more details about the different Transformer models used
in our work.

Graph Attention Networks
Graph attention networks (GAT) are a type of GNN that use
a graph attention layer to incorporate neighborhood infor-
mation of nodes (Veličković et al. 2017). GATs have outper-
formed traditional GNNs by leveraging self-attention lay-
ers to attend over features of neighboring nodes. Zhang et
al. (Zhang et al. 2019a) introduce a heterogeneous graph at-
tention networks (HGAT) to handle large-scale graphs with
different types of nodes (i.e. authors and papers in a cita-
tion graph). The HGAT consists of an multi-head graph at-
tention encoder that is initialized with pre-trained word and
structural node embeddings that are concatenated together,
h. The encoder layers learn the attention weights, oij , using
self-attention:

oij = attn(Whi,Whj)

The attention weight, oij , indicates the importance of a
neighborhood node’s, nj , features to the input node, ni. The
vectors hi and hj are the feature vectors for nodes i and j re-
spectively and W is shared projection matrix. The attention
weights are normalized using the softmax function. For each
node type, the authors use a different attention weight to ac-
count for the heterogeneous property of graphs. The differ-
ent attention heads are passed through the sigmoid activation
layer and concatenated together to get the final node repre-
sentations, e.g. h′

i and h′
j . The two node representations for

the input nodes are concatenated and passed through a fully

Model Type Embedding Dimension Vocabulary Size Token Size # of Parameters # of Parameters w. Attention Layer
BioWordVec 200 268,158,600 - 268,221,858 268,221,778
BioBERT (+ SapBERT) 768 28,996 13,230,336 13,407,194 13,407,114
BioBERT Large (Cased) 1024 58,996 28,530,688 28,758,666 28,758,746
BlueBERT 1024 30,522 25,358,336 25,586,314 25,586,394
SapBERT 768 30,522 21,035,520 21,212,298 21,212,378
UMLSBERT (+ SapBERT) 768 28,996 13,230,336 13,407,114 13,407,194
BlueBERT+ SapBERT 768 30,522 19,018,752 19,195,530 19,195,610
VanillaBERT + SapBERT 768 30,522 19,018,752 19,195,530 19,195,610

Table 3: Comparison of Siamese Networks initialized with
embedding from different biomedical BERT models

connected output layer to determine the edge between the
two input nodes:

y = fc(h′
i ⊕ h′

j)

The authors use the negative log-likelihood loss function to
optimize the model.

6 Biomedical BERT Variants
In this section, we explain the differences between the do-
main specific BERT variants used in this study. Table 3 com-
pares the different biomedical BERT models used in this pa-
per.
BioBERT: BioBERT is initialized from BERT pre-trained
on Wikipedia (2.5 billion words) and Books Corpus (0.8 bil-
lion words) (Lee et al. 2020). This BERT model is then pre-
trained on biomedical domain data consisting of PubMed
Abstracts (4.5 billion words) and PMC Full-text articles
(13.5 billion words). Then the pre-trained model was used
in several Biomedical NLP tasks such as Biomeidcal Named
Entity Recognition (BioNER), BioRE and question answer-
ing (Lee et al. 2020). For this study, we use BioBERT-Base
v1.1, which has 768 hidden units for the embedding layer,
and BioBERT-Large v1.1 (trained with a custom vocabu-
lary), which has 1024 hidden units for the embedding layer.
BlueBERT: BlueBERT is initialized with BERT weights
provided by (Devlin et al. 2018) and further pre-trained with
biomedical corpus (PubMed abstract with 4,000M words)
and clinical notes corpus (MIMIC-III with 500M words).
Two versions of BlueBERT are released consistent with
BERT-Base and BERT-Large models trained with 5M steps
on the PubMed corpus and 0.2M steps on the MIMIC-III
corpus. In our work, we use BlueBERT-Large trained on
both PubMed and MIMIC-III datasets.
SapBERT: SapBERT provides the current SOTA results
for 6 medical entity linking (MEL) bench-marking datasets.
SapBERT is trained on the UMLS with 4M+ concepts
and 10M+ synonyms from over 150 vocabularies including
MeSH, SNOMED CT, RxNorm. SapBERT is trained using
a SOTA metric learning objective inspired by visual recog-
nition, for learning from the positive and negative pairs of
the UMLS.
BioBERT + SapBERT, BlueBERT + SapBERT, Blue-
BERT + SapBERT, UMLSBERT + SapBERT, Vanill-
aBERT + SapBERT: The SapBERT authors pre-train ad-
ditional variants of SapBERT that are initialized using dif-
ferent BERT variants.
UMLSBERT: UmlsBERT is initialized with the pre-trained
Bio ClinicalBERT model (Alsentzer et al. 2019) and further
pre-trained with the MLM task on the MIMIC-III dataset.
The authors modify the pre-training task in two ways: 1) by
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Figure 1: BERT Model for Synonymy Prediction
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Figure 2: Siamese Model used in (Nguyen, Yip, and Boden-
reider 2021; Nguyen and Bodenreider 2021)

introducing an additional semantic type embedding, 2) mod-
ify the MLM task by replacing the 1-hot vector that corre-
sponds to the masked word, with a binary vector to indicate
which words share them same CUI as the masked word.

7 Approach
In this section, we first explain our experimental setup to
investigate the performance of the Siamese networks us-
ing embeddings extracted from BioBERT, BioBERT Large,
BlueBERT, SapBERT, UMLSBERT, BioBERT + SapBERT,
BlueBERT + SapBERT, UMLSBERT + SapBERT, and
VanillaBERT + SapBERT. Next, we explain our setup to in-
vestigate the performance of the different domain-specific
BERT models for the UVA task using the BERT architec-
ture.

UVA with Siamese Networks
BioWordVec embeddings are generated using the fastText
model (Bojanowski et al. 2017) on the PubMed text cor-
pus and MeSH. As mentioned, embeddings extracted from
Transformer models (e.g. BERT) used to train different deep
learning models have achieved state-of-the-art (SOTA) per-
formance on different down-stream tasks because these em-
beddings are context-dependent. For example, syntactic fea-
tures are captured better using the middle layers and seman-
tic features at the latter layers of the model (Jawahar, Sagot,
and Seddah 2019). Additionally, the original inventors of

Figure 3: HGAT adapted from (Zhang et al. 2019a)

BERT share that extracting embeddings from different lay-
ers leads to variations in performance on the down-stream
task (Devlin et al. 2018).

We use this insight from (Jawahar, Sagot, and Seddah
2019; Liu et al. 2019), to experiment weather the Siamese
Network model introduced in (Nguyen, Yip, and Bodenrei-
der 2021) can benefit from contextually aware embeddings
extracted from biomedical BERT models. We extract dif-
ferent token embeddings from different biomedical BERT
models. Different layers of BERT carry different informa-
tion (Jawahar, Sagot, and Seddah 2019; Liu et al. 2019; De-
vlin et al. 2018). Therefore, we investigate which token em-
beddings and which layers lead to better performance when
used to initialize the Siamese Network. We extract two sets
of embeddings from each model: 1) embeddings from the
last layer, and 2) embeddings from the average of the last
four layers. Additionally, we use the three different types of
token embeddings: 1) the first occurrence of the token in the
dataset, 2) the last token in the dataset, 3) the average em-
bedding of each occurrence of the token in the dataset. It is
important that we investigate which token embedding is ap-
propriate because the BERT models generate different token
embeddings for each token based on the context from the
input atom string. Of note, we only use the atom string to
extract token embeddings because all vocabularies have this
characteristic in common. We tokenize the atom strings us-
ing the BERT tokenizer and the respective vocab from each
biomedical BERT model.

UVA with Transformer Networks
To understand the usability of the domain-specific BERT
Models, we use pre-trained models for the UVA task. These
experiments allow us to benchmark the performance of the
different domain-specific BERT models for the UVA task.
Of Note, we do not fine-tune these BERT models because
the size of our training data.

For the UVA, task we use the following input format to
process the atom strings: A [CLS] token is inserted at the
beginning of the first atom string stri, followed by a [SEP]
token, followed by the second atom string strj , followed by
a final [SEP] token to indicate the end of the sequence. The
input is then processed through the BERT model and an out-
put of 0 (synonymous) or 1 (not synonymous) is predicted.

UVA with Graph Attention Networks
To understand the usability of the domain-specific BERT
Models, we adapt the HGAT introduced in (Zhang et al.



2019a). Our modified HGAT is presented in Figure 3. We
treat the Metathesaurus as a graph where the set of nodes,
N , consists of atoms, semantic groups, and source vocabu-
laries, N = (SAUI ∪ SSCUI ∪ SSG). We treat UMLS as a
undirected graph and do not differentiate between the differ-
ent relationships between nodes in the graph. Therefore, an
edge, e exists between two nodes in UMLS if they share any
relationship.

8 Experimental Setup
In this section, we provide details for our three sets of
experiments: 1) feature extraction for the Siamese Net-
work, 2) UVA with transformer networks, and 3) UVA with
graph attention networks. We run all experiments using a
High Performance Computing (HPC) cluster. We use the
following BERT models for the first two set of experi-
ments: BioBERT, BioBERT Large, BlueBERT, SapBERT,
UMLSBERT, BioBERT + SapBERT, BlueBERT + Sap-
BERT, UMLSBERT + SapBERT, and VanillaBERT + Sap-
BERT.

Feature Extraction for the Siamese Network
To understand the performance of the different embed-
dings extracted from the various BERT models, we train
the Siamese Network end to end. Our experimental setup
is similar to (Nguyen, Yip, and Bodenreider 2021; Nguyen
and Bodenreider 2021). We refrain from changing the ex-
perimental setup to allow for direct comparison of models
initialized with different embeddings.

For each model we extract 6 types of embeddings:
• Last layer embedding of the first occurrence of a token
• Average embedding of the last four layers of the first oc-

currence of a token
• Last layer embedding of the last occurrence of a token
• Average embedding of the last four layers of the last oc-

currence of a token
• Average of the last layer embedding of every occurrence

of a token
• Average embedding of the last four layers of every oc-

currence of a token
We trained each Siamese network for 100 epochs using

the Adam optimizer with a learning rate of 0.001 to replicate
the same setup as (Nguyen, Yip, and Bodenreider 2021). We
used a batch size of 8192 in our experiments. The Bi-LSTMs
consist of 50 hidden units, the first and second dense layers
contain 128 and 50 hidden units respectively. We did run ex-
periments to change the number of hidden units in the dense
layers, but found no improvement in performance. We use
up to 30 tokens from each atom string and pad the input if
needed.

UVA with BERT Models
For each BERT model (i.e., BioBERT, BioBERT Large,
BlueBERT, and SapBERT), we predict the synonymy labels
for each atom pair in the test set using the input format de-
scribed in Section 7. Results from these experiments are pre-
sented in Section 9.

Embedding Type Accuracy Precision Recall F1-Score AUC
BioWordVec 0.9938 0.8872 0.9274 0.9069 0.9909
SapBERT 0.9886 0.8053 0.854 0.8289 0.9852
BioBERT 0.9832 0.7232 0.7823 0.7516 0.9751
BioBERT Large 0.9854 0.7579 0.8098 0.783 0.9791
BlueBERT 0.9841 0.7409 0.7833 0.7615 0.9758
UMLSBERT
BioBERT + SapBERT 0.9831 0.7202 0.7828 0.7502 0.9756
BlueBERT + SapBERT 0.985 0.7477 0.8121 0.7786 0.9798
UMLSBERT + SapBERT
VanillaBERT + SapBERT 0.9855 0.7637 0.7993 0.7811 0.9791

Table 4: Results for the Siamese Model trained for 100 it-
erations using BioWordVec embeddings and BERT embed-
dings extracted using the average token and average of last
four layers (Nguyen, Yip, and Bodenreider 2021)

Embedding Type Accuracy Precision Recall F1-Score
BioWordVec Attention 0.9936 0.8884 0.9198 0.9038
SapBERT Attention 0.9886 0.8109 0.8479 0.829
BioBERT Attention 0.9852 0.7657 0.7823 0.7739
BioBERT Large Attention 0.9863 0.7754 0.8128 0.7937
BlueBERT Attention 0.9863 0.7754 0.8128 0.7937
UMLSBERT Attention
BioBERT + SapBERT Attention 0.9850 0.7634 0.7801 0.7716
BlueBERT + SapBERT Attention 0.9863 0.7791 0.807 0.7928
UMLSBERT + SapBERT Attention
VanillaBERT + SapBERT 0.9865 0.7861 0.8014 0.7937

Table 5: Results for the Siamese Model with Attention Layer
trained for 100 iterations using BioWordVec embeddings
and BERT embeddings extracted using the average token
and average of last four layers (Nguyen and Bodenreider
2021)

UVA with Graph Attention Networks
Similar to (Nguyen, Yip, and Bodenreider 2021; Nguyen
and Bodenreider 2021) we use SapBERT to extract the lexi-
cal embeddings for each atom in the UMLS. We use TransE
(Wang et al. 2014) knowledge graph embeddings to extract
structural node embeddings for each atom. We create the
neighborhood of each node by including all nodes reachable
with two hops. We restrict the max neighborhood size to 30
nodes.

9 Evaluation
We evaluate the performance of our models using Accuracy,
Precision, Recall, F-1, and AUC.
Feature Extraction with Siamese Network Results. Ta-
ble 4 presents the synonymy prediction using the Siamese
Network with embeddings extracted from BERT models and
BioWordVec embeddings. Due to space limitations, we only

Model Type Accuracy Precision Recall F1
BioBERT 0.5308 0.9683 0.5326 0.6872
BioBERT Large 0.6255 0.9870 0.6212 0.7625
BlueBERT 0.1875 0.9985 0.1607 0.2768
SapBERT 0.4929 0.6528 0.4926 0.6528
UMLSBERT
BioBERT + SapBERT 0.5550 0.9733 0.5554 0.7072
BlueBERT+ SapBERT 0.6261 0.9722 0.6318 0.7658
UMLSBERT + SapBERT 0.3325 0.9714 0.3197 0.4811
VanillaBERT + SapBERT 0.5767 0.9732 0.5785 0.7257

Table 6: Results for Synonymy Prediction using BERT mod-
els. Input format: ([CLS] srci [SEP] srcj [SEP])



Model Type Accuracy Precision Recall F1
BioBERT 0.4202 0.9778 0.4102 0.5780
BioBERT Large 0.6364 0.9864 0.6331 0.7712
BlueBERT 0.2015 0.9984 0.1752 0.2981
SapBERT 0.4500 0.9668 0.4470 0.6114
UMLSBERT
BioBERT + SapBERT 0.5704 0.9683 0.5750 0.7215
BlueBERT+ SapBERT 0.3576 0.9636 0.3494 0.5128
UMLSBERT + SapBERT
VanillaBERT + SapBERT 0.3890 0.9614 0.3841 0.5489

Table 7: Results for Synonymy Prediction using BERT mod-
els. Input format: ([CLS] srcj [SEP] srci [SEP])

Embedding Type Precision Recall F1
Structural Embeddings (TransE) 0.1406 0.9928 0.2640
Structural (TransE) + Lexical Embeddings (SapBERT) 0.7023 0.2938 0.4143

Table 8: Results for Synonymy Prediction using GANs

share results for the average token embedding and the aver-
age of last four layers of each BERT model. Table 5 presents
the synonymy prediction using the Siamese Network with an
attention layer with embeddings extracted from BERT mod-
els and BioWordVec embeddings. Our feature extraction re-
sults indicate that averaging all token embeddings and us-
ing the average of the last four hidden layers provides the
most useful embedding for most models. Additionally, we
find that using the Siamese Network with the attention layer
achieves better performance in terms of F1-score. Surpris-
ingly, using the embeddings extracted from the biomedical
BERT model do not outperform the two baselines of the
Siamese Networks with BioWordVec. We find that the em-
beddings extracted from SapBERT model lead to the best
performance for synonymy prediction.
Synonymy Prediction with BERT Results. Tables 6 and
7 present the synonymy prediction results using the BERT
architecture. The pre-trained biomedical BERT models do
not outperform the current SOTA Siamese Networks for syn-
onymy prediction. We find that the BioBERT Large model
is the best performing model for synonymy prediction. We
attribute the performance of this model to its size. We run
additional experiments to determine if changing the order of
the atoms affects the performance of the models (i.e. feed-
ing (srcj , srci) as input instead of (srci, srcj)). These re-
sults are present in Table 7. We see that changing the order
of the input atom strings only improves the performance for
two biomedical BERT models: BioBERT and BlueBert +
SapBERT. The results increase for BioBERT and BlueBert
+ SapBERT by about 0.026% and 0.049% in terms of F1-
score.
Synonymy Prediction with GATs. Table 8 shares the re-
sults of our two experiments using graph attention networks.
In our first experiment we only use structural embeddings to
initialize the model. Next, we use both lexical and structural
embeddings. We find that using structural embeddings only
are not enough for the model to learn the relationships be-
tween nodes in the graph. We attribute these low results to
the fact that the embeddings in the model remained fixed and
are not updated throughout the training process.
Discussion. Our current results for both set of experiments

do not outperform the current SOTA. These results indicate
that the pre-trained language models on the datasets from the
same domain are not enough to accurately predict synonymy
among atoms in the Metathesaurus. The number of parame-
ters for the Siamese Networks initialized with BioWordVec
are one magnitude higher than all of the BERT models. The
large size of the vocabulary could be an indication as to why
BioWordVec performs well when compared to the biomedi-
cal BERT based variants. Additionally, from our Synonymy
prediction task we find that using a BERT model trained on
the right data and the right task yeilds larger gains in per-
formance for synonymy prediction. The SapBERT model
is trained on PubMed and incorporates knowledge from the
UMLS Metathesaurus in two ways: 1) using semantic type
embeddings and 2) modifying the MLM task to indicate if
which words belong to the same concept. These changes
to the model likely indicate why it outperforms the other
biomedical BERT models for synonymy prediction using the
Siamese Networks. We find that using the biomedical BERT
embeddings with the Siamese Network yield better results
than using the pre-trained BERT models for the UVA task.
The AUC scores are much higher for the Siamese Networks
when compared to the BERT models. These results indi-
cate that further fine-tuning is required to use the biomedical
BERT models for the UVA task. GATs for synonymy predic-
tion do not outperform the Siamese Networks. Additionally,
GATs are more computationally expensive to train. As men-
tioned, we attribute the low performance of the GANs to the
fixed embeddings. As future work, we aim to update the em-
beddings during the training process.

10 Conclusion

In this paper, we evaluated different methods of using
biomedical BERT-based models in two model architectures:
(1) Siamese Network, and (2) Transformer for predicting
synonymy in the UMLS Metathesaurus. We also examine
the use of GATs for synonymy prediction. We aimed to val-
idate if these approaches using the BERT models and GATs
can actually out-perform the existing approaches. We re-
place the BioWordVec embeddings in the Siamese Networks
with the biomedical BERT embeddings extracted from dif-
ferent models using different ways of extraction. We eval-
uate the use of the different pre-trained biomedical BERT
models using the transformer architecture that. Additionally,
we formulate synonymy prediction as a link prediction task
to employ GANs. Our experiments yield surprisingly inter-
esting results: (1) the approaches employing these biomed-
ical BERT-based models do not outperform the existing ap-
proaches using Siamese Network with BioWordVec embed-
dings for the UMLS synonymy prediction task, (2) the origi-
nal BioBERT large model that has not been pre-trained with
the UMLS outperforms the SapBERT models that have been
pre-trained with the UMLS, and (3) using the Siamese Net-
works yields better performance for synonymy prediction
when compared to using the biomedical BERT models and
GANs.
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