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Motivation

NIH)

National Library of Medicine
Lister Hill National Center for Blomedical Communicalions  ypLS Metathesaurus. Under submission

UMLS Metathesaurus integrates biomedical terms from various
vocabularies
Different vocabularies lead to different terms for similar concepts
Current UMLS construction process: tedlious, error-prone, expensive
Our prior work [1, 2]:
O  Rule-based approximation of current construction process
O  LexLM: deep learning model that leverages lexical patterns
O  ConlM: LexLM + knowledge graph embeddings
How can we leverage contextual information?
O  How does adding contextual information (i.e., semantic group, source
synonymy, hierarchical information) affect disambiguation of terms?
O Which graph-based models are suitable for synonymy prediction?

[1] Nguyen, V., Yip, H. Y., & Bodenreider, O. (2021, April). Biomedical Vocabulary Alignment at Scale in the UMLS Metathesaurus. In

Proceedings of the Web Conference 2021 (pp. 2672-2683).
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[2] Yip H. Y., Nguyen, V., Sheth, A., & Bodenreider, O. Context-Enriched Learning Models for Aligning Biomedical Vocabularies in the
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Objectives

1. Survey graph-based deep learning techniques for leveraging
contextual information from UMLS.

2. Develop a novel, scalable, graph-based deep learning model

using contextual information for synonymy prediction that
outperforms LexIM & ConlI M.
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Scalabilty Challenges

DBP 15K* Open Academic Graph** UMLS

# of Nodes 55K to 105K 700 Million + 13 Million +
(split across 3 graphs)

# of Training Pairs | 153K to 279K 20K 118 Million +

Computational Limits:
500+ GB to load training data (BioWulf limit: 373 GB on GPU node)
« 7 Days for 1 Epoch on Single GPU

*Sun, Z., Hu, W., & Li, C. (2017, October). Cross-lingual entity alignment via joint attribute-preserving embedding. In International Semantic Web Conference (pp. 628-644). Springer, Cham.
** Zhang, Fanjin, et al. "Oag: Toward linking large-scale heterogeneous entity graphs." Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019.
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Contributions

1. Implemented graph attention network (GAN) for synonymy predicion at
scale

2. Evaluated and analyzed performance of GAN models

3. ldentified shortcomings and areas of improvement of GAN
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Graph Attention Network
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Model Components
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e Node /edge embeddings § D
o Lexical embeddings: BioWordVec [1], SapBERT [2], UBERT, etc.. Goased .
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[1] Zhang, Yijia, et al. "BioWordVec, improving biomedical word embeddings with subword information and MeSH." Scientific data 6.1 (2019): 1-9.
[2] Liu, Fangyu, et al. "Self-alignment pretraining for biomedical entity representations." arXiv preprint arXiv:2010.11784 (2020).

[3] Bordes, A., et al. (2013). Translating embeddings for modeling multi-relational data. Advances in neural information processing systems, 26.
[4] Trouillon, Théo, et al. "Complex embeddings for simple link prediction." International conference on machine learning. PMLR, 2016.
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Experimental Design & Results
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Current progress

e Ongoing Work:
o Training different model variants
o Develop a new GAN model
o Conduct qualitative analysis with different GAN models

e Future Work:

o Develop novel graph embedding method
o Explore heterogeneous graph transformer network
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